Table of Contents
- Figure 2. Typical ST3300555SS drive current profiles 26
- Figure 3. Typical ST3146755SS drive current profiles 27
- Figure 4. Typical ST373355SS drive current profiles 28
- Figure 5. ST3300555SS (3 Gbit) DC current and power vs. input/output operations per second 29
- Figure 6. ST3300555SS (1.5 Gbit) DC current and power vs. input/output operations per second 29
- Figure 7. ST3146755SS (3 Gbit) DC current and power vs. input/output operations per second 30
- Figure 8. ST3146755SS (1.5 Gbit) DC current and power vs. input/output operations per second 30
- Figure 9. ST373355SS (3 Gbit) DC current and power vs. input/output operations per second 31
- Figure 10. ST373355SS (1.5 Gbit) DC current and power vs. input/output operations per second 31
- Figure 11. Location of the HDA temperature check point 32
- Figure 12. Recommended mounting 34
- Figure 13. Physical dimensions 36
- Figure 14. Physical interface 41
- Figure 15. Air flow 42
- Figure 16. Physical interface 57
- Figure 17. SAS connector dimensions 58
- Figure 18. SAS connector dimensions 59
- Figure 19. SAS transmitters and receivers 61
- Figure 20. Receive eye mask 63
- Figure 21. Reveive tolerance eye mask 63
- Figure 22. Sinusoidal jitter mask 64
- Figure 23. Compliance interconnect test load 69
- Figure 24. Zero-length test load 70
- Figure 25. ISI loss example at 3.0 Gbps 70
- Figure 26. ISI loss example at 1.5 Gbps 70
- 1.0 Scope
- 2.0 Standards, compliance and reference documents
- 3.0 General description
- 4.0 Performance characteristics
- 5.0 Reliability specifications
- 6.0 Physical/electrical specifications
- 7.0 Defect and error management
- 8.0 Installation
- 9.0 Interface requirements
- 9.1 SAS features
- 9.2 Dual port support
- 9.3 SCSI commands supported
- 9.4 Miscellaneous operating features and conditions
- 9.5 Signal characteristics
- 10.0 Seagate Technology support services
Seagate T10 SAS User Manual
Displayed below is the user manual for T10 SAS by Seagate which is a product in the Internal Hard Drives category. This manual has pages.
Related Manuals
Cheetah T10 SAS
ST3300555SS
ST3146755SS
ST373355SS
©2006, Seagate Technology LLC All rights reserved
Publication number: 100433694, A
October 2006
Seagate, Seagate Technology, and the Seagate logo are registered trademarks of Seagate
Technology LLC. SeaTools, SeaFONE, SeaBOARD, and SeaTDD are either registered trade-
marks or trademarks of Seagate Technology LLC. Other product names are registered trade-
marks or trademarks of their owners.
Seagate rese rves the right to ch ange, wit hout notic e, product offerings or specifications. No part
of this publication m ay be reprodu ced in any form without written permission of Seagate Technol-
ogy LLC.
Cheetah T10 SAS Product Manual, Rev. A i
Contents
1.0 Scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.0 Standards, compliance and reference documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Electromagnetic compatibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 Electromagnetic compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Reference documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.0 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Standard features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Media description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 Formatted capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.6 Programmable drive capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.7 Factory-installed accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.8 Options (factory installed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.9 User-installed accessories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.0 Performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1 Internal drive characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Seek time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.1 Access time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.2 Format command execution time (minutes) . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.3 General performance characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Start/stop time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Prefetch/multi-segmented cache control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.5 Cache operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.5.1 Caching write data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5.2 Prefetch operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.0 Reliability specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1 Error rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.1 Recoverable Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.2 Unrecoverable Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.3 Seek errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.4 Interface errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Reliability and service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2.1 Mean time between failure (MTBF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2.2 Preventive maintenance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2.3 Hot plugging the drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.4 S.M.A.R.T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.5 Thermal monitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.6 Drive Self Test (DST). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.7 Product warranty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.0 Physical/electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.1 AC power requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 DC power requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2.1 Conducted noise immunity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.2 Power sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.3 Current profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3 Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4 Environmental limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
ii Cheetah T10 SAS Product Manual, Rev. A
6.4.1 Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.4.2 Relative humidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.4.3 Effective altitude (sea level) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.4.4 Shock and vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.4.5 Air cleanliness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.4.6 Corrosive environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.4.7 Acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.4.8 Electromagnetic susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.5 Mechanical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.0 Defect and error management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.1 Drive internal defects/errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.2 Drive error re co ve ry pr oc ed u re s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.3 SAS system errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.4 Background Media Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.5 Media Pre-Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.6 Deferred Auto-Reallocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.7 Idle Read After Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.0 Installation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.1 Drive orientation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.2 Cooling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.3 Drive mounting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.4 Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.0 Interface requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.1 SAS features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.1.1 task management functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.1.2 task management responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.2 Dual port support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.3 SCSI commands supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.3.1 Inquiry data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
9.3.2 Mode Sense data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
9.4 Miscellaneous operating features and conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.4.1 SAS physical interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.4.2 Physical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.4.3 Connector requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.4.4 Electrical description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.4.5 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.4.6 SAS transmitters and receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.4.7 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.5 Signal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.5.1 Ready LED Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.5.2 Differential signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.0 Seagate Technology support services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Cheetah T10 SAS Product Manual, Rev. A 1
List of Figures
Figure 1. Cheetah T10 SAS disc drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Figure 2. Typical ST3300555SS drive current profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Figure 3. Typical ST3146755SS drive current profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Figure 4. Typical ST373355SS drive current profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Figure 5. ST3300555SS (3 Gbit) DC current and power vs. input/output operations per second . . . . . . . . . . . . . . . . .29
Figure 6. ST3300555SS (1.5 Gbit) DC current and power vs. input/outp ut operations per second. . . . . . . . . . . . . . . .29
Figure 7. ST3146755SS (3 Gbit) DC current and power vs. input/output operations per second . . . . . . . . . . . . . . . . .30
Figure 8. ST3146755SS (1.5 Gbit) DC current and power vs. input/outp ut operations per second. . . . . . . . . . . . . . . .30
Figure 9. ST373355SS (3 Gbit) DC current and power vs. input/output operations per second . . . . . . . . . . . . . . . . . .31
Figure 10. ST373355SS (1.5 Gbit) DC current and power vs. input/output operations per second. . . . . . . . . . . . . . . . .31
Figure 11. Location of the HDA temperature check point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Figure 12. Recommended mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Figure 13. Physical dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Figure 14. Physical inte rface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Figure 15. Air flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Figure 16. Physical interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Figure 17. SAS connector dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Figure 18. SAS connector dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Figure 19. SAS transmitters and receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Figure 20. Receive eye mask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Figure 21. Reveive tolerance eye mask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Figure 22. Sinusoidal jitter mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Figure 23. Compliance interconnect test load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Figure 24. Zero-length test load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Figure 25. ISI loss example at 3.0 Gbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Figure 26. ISI loss example at 1.5 Gbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
2 Cheetah T10 SAS Product Manual, Rev. A
Cheetah T10 SAS Product Manual, Rev. A 1
1.0 Scope
This manual describes Seagate Technology® LLC, Cheetah® SAS (Serial Attached SCSI) disc drives.
Cheetah drives support the SAS Protocol specifications to the extent described in this manual. The SAS Inter-
face Manual (part number 100293071) describes the general SAS characteristics of Cheetah T10 and other
Seagate SAS drives.
Figure 1. Cheetah T10 SAS disc drive
2 Cheetah T10 SAS Product Manual, Rev. A
Cheetah T10 SAS Product Manual, Rev. A 3
2.0 Standards, compliance and reference documents
The drive has been developed as a system peripheral to the highest standards of design and construction. The
drive depends on its host equipment to provide adequate power and environment for optimum performance
and compliance with applicable industry and governmental regulations. Sp ecial attention must be giv en in the
areas of safety, power distribution, shielding, audible noise control, and temperature regulation. In particular,
the drive must be se curely mounted to gu arantee the specified performance characteristics. Mounting by bot-
tom holes must meet the requirements of Section 8.3.
2.1 Standards
The Cheetah SAS family complies with Seagate standards as noted in the appropriate sections of this manual
and the Seagate SAS Interface Manual, part number 100293071.
The Cheet ah d isc drive is a UL recog nized com pon ent per UL1950, CSA certified to CAN/CSA C22.2 No. 950-
95, and VDE certified to VDE 0805 and EN60950.
2.1.1 Electromagnetic compatibility
The drive, as delivered, is designed for system integration and installation into a suitable enclosure prior to
use. The dr ive is supplied as a subassembly an d is not subjec t to Subpart B of Part 15 of the FCC Rules a nd
Regulations nor th e Rad i o Inte rf er en ce Reg ula tions of the Canadian Department of Communications.
The design characteristics of the drive serve to minimize radiation when insta lled in an enclosure that provides
reasonable shielding. The drive is capable of meeting the Class B limits of the FCC Rules and Regulations of
the Canadian Department of Communications when properly pa ckaged; however, it is the user ’s responsibility
to assure that the drive meets the appropriate EMI requirements in their system. Shielded I/O cables may be
required if the enclos ur e does not provide adequate shieldin g. If the I/O cables ar e external to the enclosure,
shielded cables should be used, with the shields grounded to the enclosure and to the host controller.
2.1.1.1 Electromagnetic susceptibility
As a component assembly, the drive is not required to meet any susceptibility performance requirements. It is
the responsibility of those integrating the drive within their systems to perform those tests required and design
their system to ensure that equipment operating in the same system as the drive or external to the system
does not adversely affect the performance of the drive. See Tables 2, 3 and 4, for DC power requirements.
4 Cheetah T10 SAS Product Manual, Rev. A
2.2 Compliance
2.2.1 Electromagnetic compliance
Seagate uses an independent laboratory to confirm compliance with the directives/standards for CE Marking
and C-Tick Marking. The drive was tested in a r epresent ative system for typical applications. The selected sys-
tem represe nts the most pop ula r ch ar ac te rist ics for test platforms. The system configurations include:
• Typical current use microprocessor
• 3.5-inch floppy disc drive
• Keyboard
• Monitor/display
• Printer
• External modem
•Mouse
Although the test system with this Seagate model complies with the directives/stand ards, we cannot guarantee
that all systems will comply. The computer manufacturer or system integrator shall confirm EMC compliance
and provide the appropriate marking for their product.
Electromagnetic compliance for the European Union
If this model has the CE Marking it complies with the European Union requirements of the Electromagnetic
Compatibility Directive 89/336/EEC of 03 May 1989 as amended by Directive 92/31/EEC of 28 April 1992 and
Directive 93/68/EEC of 22 July 1993.
Australian C-Tick
If this model has the C-Tick Markin g it complies with the Australia/New Zealand Standard AS/NZS3548 1995
and meets the Electromagnetic Compatibility (EMC) Framework requirements of Australia’s Spectrum Man-
agement Agency (SMA).
Korean MIC
If this model has the Korean Ministry of Information and Communication (MIC) logo, it complies with paragraph
1 of Article 11 of the Electromagnetic Compatibility (EMC) Co ntrol Regulation and meets the Electromagnetic
Compatibility Framework requirements of the Radio Research Laboratory (RRL) Ministry of Information and
Communication Republic of Korea.
Taiwanese BSMI
If this model has two Chinese words m eaning “EMC certification” followed by an eight digit identification num-
ber, as a Marking, it complies with Chinese National Standard (CNS) 13438 and meets the Electromagnetic
Compatibility (EMC) Framework requirements of the Taiwanese Bureau of Standards, Metrology, and Inspec-
tion (BSMI).
Cheetah T10 SAS Product Manual, Rev. A 5
2.3 Reference documents
Cheetah T10 SAS Installation Guide Seagate part number: 100433695
SCSI Commands Reference Manual Seagate par t number: 100293068
SAS Interface Manual Seagate part number: 100293071
Applicable ANSI SAS documents
SFF-8323 3.5” Drive Form Factor with Serial Connector
SFF-8460 HSS Backplane Design Guidelines
SFF-8470 Multi Lane Copper Connector
SFF-8482 SAS Plug Connector
ANSI INCITS.xxx Serial Attached SCSI (SAS) Standard (T10/1562-D)
ISO/IEC 14776-xxx SCSI Architecure Model-3 (SAM-3) Standard (T10/1561-D)
ISO/IEC 14776-xxx SCSI Primary Commands-3 (SPC-3) Standard (T10/1416-D)
ISO/IEC 14776-xxx SCSI Block Commands-2 (SBC-2) Standard (T10/1417-D)
ANSI Small Computer System Interface (SCSI) Documents X3.270-1996(SCSI-3) Architecture Model
Specification for Acoustic Test Requirement and Procedures Seagate par t number: 30553-001
Package Test Specification Seagate P/N 30190-001 (under 100 lb.)
Package Test Specification Seagate P/N 30191-001 (over 100 lb.)
In case of conflict between this document and any referenced document, this document takes precedence.
6 Cheetah T10 SAS Product Manual, Rev. A
Cheetah T10 SAS Product Manual, Rev. A 7
3.0 General description
Cheetah drives combine giant magnetoresistive (GMR) heads, partial response/maximum likelihood (PRML)
read channel electronics, embedded servo technology, and a Serial Attached SCSI (SAS) interface to provide
high performance, high capacity data storage for a variety of systems including engineering work stations, net-
work servers, ma in fra m es , an d supe rcomputers. T he Seri al Attached SCSI interface is designed to meet next-
generation computing demands for performance, scalability, flexibility and high-density storage requirements.
Cheetah drives are random access storage devices designed to support the Serial Attached SCSI Protocol as
described in the ANSI specifications, this document, and the SAS Interface Manual (part number 100293071)
which describes the general interface characteristics of this drive. Cheetah drives are classified as intelligent
peripherals and provide level 2 conformance (highest level) with the ANSI SCSI-1 standard. The SAS connec-
tors, cables and electrical interface are compatible with Serial ATA (SATA), giving future users the choice of
populating their systems with either SAS or SAT A hard disc drives. This allows you to continue to leverage your
existing investment in SCSI while gaining a 3Gb/s serial data transfer rate.
The head and disc assembly (HDA) is sealed at the factory. Air recirculates within the HDA through a non-
replaceable filter to maintain a contamination-free HDA environment.
Note. Never disassemble the HDA and do not attempt to service items in the sealed enclosure (heads,
media, actuator, etc.) as this requires special facilities. The drive does not contain user-replaceable
parts. Opening the HDA for any reason voids your warranty.
Cheetah drives use a dedicated landing zone at the innermost radius of the media to eliminate the possibility of
destroying or degr ading dat a by landing in th e data zone. The hea ds automatically go to the lan ding zone when
power is removed from the drive.
An automatic shipping lock pr events potential damage to the heads and discs that results from movement dur-
ing shipping and handling. The shipping lock disengages and the head load process begins when power is
applied to the drive.
Cheetah drives decode track 0 location data from the servo data embedded on each surface to eliminate
mechanical transducer adjustments and related reliability concerns.
The drives also use a high-performance actuator assembly with a low-inertia, balanced, patented, straight arm
design that provides excellent performance with minim al power dissipation.
8 Cheetah T10 SAS Product Manual, Rev. A
3.1 Standard features
Cheetah drives have the following standard features:
• 1.5 / 3 Gbit Serial Attached SCSI (SAS) interface
• Integrated dual port SAS controller supporting the SCSI protocol
• Support for SAS expanders and fanout adapters
• Firmware downloadable using the SAS interface
• 128-deep task set (queue)
• Supports up to 32 initiators
• Jumperless configuration.
• User-selecta ble logical block size (512, 520, 524, or 528 bytes per logical block)
• Perpendicular recording technology
• Programmable logical block reallocation scheme
• Flawed logical block reallocation at format time
• Programmabl e auto write and read reallocation
• Reallocation of defects on command (Post Format)
• ECC maximum burst correction length of 320 bits
• No preventive maintenance or adjustments required
• Dedicated head landing zone
• Embedded servo design
• Automatic shipping lock
• Embedded servo design
• Self diagnostics performed when power is applied to the drive
• Zone bit record in g (Z BR)
• Vertical, horizontal, or top down mounting
• Dynamic spindle brake
• 16 Mbyte data buf fer (see Section 4.5).
• Drive Self Test (DST)
• Background Media Scan (BGMS)
•Power Save
3.2 Media description
The media used on the drive has an aluminum substrate coated with a thin f ilm m ag ne tic material, o ve rco a ted
with a proprietary protective layer for improved durability and environmental protection.
3.3 Performance
• Programmabl e multi-segmentable cache buffer
• 300 Mbytes/sec maximum instantaneous data transfers.
• 15k RPM spindle. Average latency = 2.0 msec
• Background processing of queue
• Supports start and stop commands (spindle stops spinning)
• Adaptive seek velocity; improved seek performance
Cheetah T10 SAS Product Manual, Rev. A 9
3.4 Reliability
• 1,400,000 hour MTBF (Annualized Failure Rate (AFR) of 0.62%)
• Incorporates industry-standard Self-Monitoring Analysis and Reporting Technology (S.M.A.R.T.)
• 5-year warranty
3.5 Formatted capacities
Standard OEM models are formatted to 512 bytes per block. The block size is selectable at format time and
must be a multiple of 4 bytes. Users having the necessary equipment may modify the data block size before
issuing a format command and obtain different formatted capacities than those listed.
To provide a stable target capacity environment and at the same time provide users with flexibility if they
choose, Seagate reco mmends product planning in one of two modes:
1. Seagate de signs specify capacity p oints at ce rtain block sizes that Seagate guarantees current and future
products will meet. We recommend customers use this capacity in their project planning, as it ensures a
stable operating point with backward and forward compatibility from generation to generation. The current
guaranteed operating points for this product are:
2. Seagate dr ives a lso m ay be u sed at th e ma ximum availa ble ca pacity at a g iven b lock s ize , but th e ex cess
capacity above the guaranteed level will vary between other drive families and from generation to genera-
tion, depending on how each block size actually formats out for zone frequencies and splits over servo
bursts. This added capacity potential may range from 0.1 to 1.3 percent above the guaranteed capacities
listed above. Using the drives in this manner gives the absolute maximum capacity potential, but the user
must determine if the extra capacity potential is useful, or whether their assurance of backward and for-
ward compatibility ta kes prec edence.
3.6 Programmable drive capacity
Using the Mode Select command, th e drive can change its capacity to something less than maximum. See the
Mode Select (6) parameter list table in the SAS Interface Manual, part number 100293071. A value of zero in
the Number of Blocks field indicates that the drive will not change the capacity it is currently formatted to have.
A number other than zero and less than the maximum number of LBAs in the Number of Blocks field changes
the total drive capa city to the value in the Number of Blocks field. A value greate r than the maximu m number of
LBAs is rounded down to the maximum capacity.
3.7 Factory-installed accessories
OEM standard drives are shipped with the Cheetah T10 SAS Installation Guide, part number 100433695, and
the Safety and Regulatory Agency Specifications, part number 75789512 (unless otherwise specified).
Capacity (Blocks)
Sector Size
ST3300555SS ST3146755SS ST373355SS
Decimal Hex Decimal Hex Decimal Hex
512 585,937,500 22ECB25C 286,749,488 11177330 143,374,744 88BB998
520 573,653,847 22314357 280,790,184 10BC84A8 140,395,092 85E4254
524 566,007,800 21BC97F8 275,154,368 106685C0 137,577,184 83342E0
528 557,874,778 21407E5A 272,662,935 10408197 136,331,467 82040CB
10 Cheetah T10 SAS Product Manual, Rev. A
3.8 Options (factory installed)
You may order the following items which are incorporated at the manufacturing facility during production or
packaged before shipping. Some of the options available are (not an exhaustive list of possible options):
• Other capacities can be ordered depending on sparing scheme and sector size requested.
• Single-unit shipping pack. The drive is normally shipped in bulk packaging to provide maximum protection
against transit damage. Unit s shipped in dividually require ad ditional protection a s provided by the sin gle unit
shipping pack. Users pl anning single unit distribution should specify this option.
•The Cheetah T10 SAS Installation Guide, part number 100433695, is usually included with each standard
OEM drive shipped, but extra copies may be ordered.
•The Safety and Regulatory Agency Specifications, part number 75789512, is usually included with each
standar d OEM drive shipped, but extra copies may be ordered.
3.9 User-installed accessories
The following accessory is available:
• Single-unit shipping pack.
Cheetah T10 SAS Product Manual, Rev. A 11
4.0 Performance characteristics
This section provides detailed information concerning performance-related characteristics and features of
Cheetah drives.
4.1 Internal drive characteristics
ST3300555SS ST3146755SS ST373355SS
Drive capacity 300.0 146.8 73.4 Gbytes (formatted, rounded off value)*,**
Read/write data heads 8 4 2
Tracks per surface (total) 74,340 74,340 74,340 Tracks (user accessible)
Tracks per inch 125,000 125,000 125,000 TPI
Peak bits per inch 890k 890k 890k KBPI
Areal Density 110 110 110 Gbits/inch2
Internal data rate 960 to 1607 960 to 1607 960 to 1607 Mbits/sec (variable with zone)
Disc rotation speed 15k 15k 15k rpm
Avg rotational latency 2.0 2.0 2.0 msec
*One Gbyte equals one billion bytes when referring to hard drive capacity. Accessible capacity may vary depending on operating environment
and formatting.
**Rounded off value.
4.2 Seek time
See Section 9.4.1, "SAS physical interface" on page 57 and the SAS Interface Manual (part number
100293071) for additional timing details.
4.2.1 Access time
Not Including controller overhead1, 2 (msec)
1. Typical access times are measured under nominal conditions of temperature, voltage,
and horizont al orientation as measure d on a representative sample of drives.
2. Access to data = access time + latency time.
Read Write
Average Typical 3.5 4.0
Single track Typical 0.2 0.4
Full stroke Typical 6.8 7.5
12 Cheetah T10 SAS Product Manual, Rev. A
4.2.2 Format command exe cu ti on time (minutes)
Execution time measured from receipt of the last byte of the Command Descriptor Block (CDB) to the request
for a Status Byte Transfer to the Initiator (excluding connect/disconnect).
4.2.3 General performance characteristics
4.3 Start/stop time
The drive accepts the commands listed in the SAS Interface Manual less than 3 seconds after DC power has
been applied.
If the drive receives a NOTIFY (ENABLE SPINUP) primitive through either port and has not received a START
STOP UNIT command with the START bit equal to 0, the drive becomes ready for normal operations within 20
seconds (excluding the error reco ve ry pr oc ed u re ).
If the drive receives a START STOP UNIT command with the START bit equal to 0 before receiving a NOTIFY
(ENABLE SPINUP) primitive, the drive waits for a START STOP UNIT comman d with the START bit equal to 1.
After receiving a START STOP UNIT command with the START bit equal to 1, the drive waits for a NOTIFY
(ENABLE SPINUP) primitive. After receiving a NOTIFY (ENABLE SPINUP) primitive through either port, the
drive becomes ready for norm al operations within 20 seconds (excluding the error recovery procedure).
If the drive receives a START STOP UNIT command with the START bit and IMMED bit equal to 1 and does
not receive a NOTIFY (ENABLE SPINUP) primitive within 5 seconds, the drive fails the START STOP UNIT
command.
ST3300555SS ST3146755SS ST373355SS
Maximum (with verify) 145 90 60
Maximum (without verify) 90 45 30
Sustainable disc transfer rate*:
Minimum 55.5 Mbytes/sec
Maximum 93 Mbytes/sec
SAS Interface maximum instantaneous transfer rate 300 Mbytes/sec* per port
(dual port = 600 Mbytes/sec*)
Logical block sizes
Default is 512-byte data blocks
Sector sizes variable to 512, 520, 524 an 528 bytes.
Read/write consecutive se ctors on a track Yes
Flaw reallocation performance impact (for flaws reallocated at format time using
the spare sectors per sparing zone reallocation scheme.) Negligible
Average rotational latency 2.0 msec
*Assumes system ability to support the rates listed and no cable loss.
Cheetah T10 SAS Product Manual, Rev. A 13
The START ST OP UNIT com mand may be u sed to command t he drive to stop th e spindle. Stop time is 30 sec-
onds (maximum) from removal of DC power. There is no power control switch on the drive.
4.4 Prefetch/multi-segmented cache control
The drive provides a prefetch (read look-ahead) and multi-segmented cache control algorithms that in many
cases can enhance system performance. Cache refers to the drive buffer storage space when it is used in
cache operations. To select this feature, the host sends the Mode Select command with the proper values in
the applicable bytes in page 08h. Prefetch and cache operations are indep endent features from the standpoint
that each is enabled and disabled independently using the Mode Select command; however, in actual opera-
tion, the prefetch feature overlaps cache operation somewhat as described in sections 4.5.1 and 4.5.2.
All default cache and prefetch mode parameter values (Mode Page 08h) for standard OEM versions of this
drive family are given in Section 9.3.2.
4.5 Cache operation
Note. Refer to the SAS Interface Manual for more detail concerning the cache bits.
Of the 16 Mbytes physical buf fer sp ace in th e drive , ap proximately 1 3,000 kb ytes can b e used as a cache . The
buffer is divided into logical segments from which data is read and to which data is written.
The drive keeps track of the logical block addresses of the data stored in each segment of the buffer. If the
cache is enabled (see RCD bit in the SAS Interface Manual ), data re quested by th e host with a read com mand
is retrieved from the buf fer, if possible, before any disc access is initiated. If cache operation is not enabled, the
buffer is still used, but only as circular buffer segments during disc medium read operations (disregarding
Prefetch operation for the moment). That is, the drive does not check in the buffer segments for the requested
read data , but goes directly to the me dium to retrieve it. The retrieved data merely passes through some buffer
segment on the way to the host. All data transfers to the host are in acc or da n ce wit h bu ffer-full ratio ru le s. Se e
the explanation provided with the information about Mode Page 02h (disconnect/reconnect control) in the SAS
Interface Manual.
The following is a simplified description of the prefetch/cache operation:
Case A—read command is received and all of the requested logical blocks are already in the cache:
1. Drive transfers the requested logical blocks to the initiator.
Case B—A Read command requests data, and at least one requested logical block is not in any segment of
the cache:
1. The drive fetches the requested logical blocks from the disc and transfers them into a segment, and then
from there to the host in accordance with the Mode Select Disconnect/Reconnect parameters, page 02h.
2. If the prefetch fe ature is enabled, re fe r to section 4.5.2 for operation from this point.
Each cache segment is actually a self-contained circular buffer whose length is an integer number of logical
blocks. The drive dynamically creates and removes segments based on the workload. The wrap-around capa-
bility of the individual segments greatly enhances the cache’s overall performance.
Note. The size of each segment is not reported by Mode Sense command page 08h, bytes 14 and 15.
The value 0XFFFF is always reported regardles s of the actual size of the segment. Sending a size
specification using the Mode Select command (bytes 14 and 15) does not set up a new segment
size. If the STRICT bit in Mode page 00h (byte 2, bit 1) is set to one, the drive responds as it does
for any attempt to change an unchangeable parameter.
14 Cheetah T10 SAS Product Manual, Rev. A
4.5.1 Caching write data
Write caching is a wr ite op eration by the dr ive that m akes us e of a driv e buffer storag e area where th e data to
be written to the medium is stored while the drive performs the Write command.
If read caching is enabled (RCD=0), then data written to the medium is retained in the cache to be made avail-
able for future read cache hits. The same buffer space and segmentation is used as set up for read functions.
The buffer segmentation scheme is set up or changed independently, having nothing to do with the state of
RCD. When a write command is issued, if RCD=0, the cache is first checked to see if any logical blocks that
are to be written are already stored in the cache from a previous read or write command. If there are, the
respective cache segments are cleared. The new data is cached for sub sequent Read commands.
If the number of write dat a logical blocks exceed the size of the se gment being written into, when the end of the
segment is reached, the data is written into the beginning of the same cache segment, overwriting the data th at
was written there at the beginning of the operation; however, the drive does not overwrite data that has not yet
been written to th e me d ium .
If write caching is enabled (WCE=1), then the drive may return Good status on a write command after the data
has been transferred into the cache, but before the data has been written to the medium. If an error occurs
while writing the data to the medium, and Good status has already been returned, a deferred error will be gen-
erated.
The Synchronize Cache command may be used to force th e drive to write all cached write dat a to the medium.
Upon completion of a Synchronize Cache command, all data received from previous write commands will have
been written to th e me d ium .
Tables 10, 11, and 12 shows the mode default settings for the drives.
4.5.2 Prefetch op e r at io n
If the Prefetch feature is enabled, data in contiguous logical blocks on the disc immediately beyond that which
was requested by a Read command are retrieved and stored in the buffer for immediate transfer from the
buffer to the host on subsequent Read commands that request those logical blocks (this is true even if cache
operation is disa b led ). Th ou gh the pr ef etch operation u s es the buffer as a cache, finding the requested data in
the buffer is a prefetch hit, not a cache operation hit.
To enable Prefetch, use Mode Select page 08h, byte 12, bit 5 (Disable Read Ahead - DRA bit). DRA bit = 0
enables prefetch.
The drive does not use the Max Prefetch field (bytes 8 and 9) or the Prefetch Ceiling field (bytes 10 and 11).
When prefetch (read look-ahead) is enabled (enabled by DRA = 0), the drive enables prefetch of contiguous
blocks from the disc when it senses that a prefetch hit will likely occur. The drive disables prefetch when it
decides that a prefetch hit is not likely to occur.
Cheetah T10 SAS Product Manual, Rev. A 15
5.0 Reliability specifications
The following reliability specifications assume correct host and drive operational interface, including all inter-
face timings, power supply voltages, environmental requirements and drive mou n tin g c on st ra ints.
5.1 Error rates
The error rates stated in this manual assume the following:
• The drive is operated per this specification using DC power as defined in this manual (see Section 6.2).
• Errors caused by host system failures are excluded from error rate computations.
• Assume random data.
• Default OEM error recovery settings are applied. This includes AWRE, ARRE, full read retries, full write
retries and full retry time.
5.1.1 Recoverable Errors
Recovereable errors are those detected and corrected by the drive, and do not require user intervention.
Recoverable Data errors will use correction, although ECC on-the-fly is not considered for purposes of recov-
ered error specifications.
Recovered Data error rate is determined using read bits transfer red for recoverable errors o ccurring during a
read, and using write bits transferred for recoverable errors occurring during a write.
5.1.2 Unrecoverable Errors
Unrecoverable Data Errors (Sense Key = 03h) are specified at less than 1 sector in error per 1016 bits trans-
ferred. Unrecoverable Data Errors resulting from the same cause are treated as 1 er ror for that block.
Seek error rate: Less than 10 error s in 108 seeks
Read Error Rates1
1. Error rate specified with automatic retries and data correction with ECC enabled and all flaws reallocated.
Recovered Data Less than 10 error s in 1012 bits transferred (OEM de fa u lt sett ing s)
Unrecovered Data Less than 1 sector in 1016 bits transfer re d
Miscorrected Data Less than 1 sector in 1021 bits transfe r re d
Interfac e er ro r ra te : Less than 1 erro r in 10 12 bits transf er re d
MTBF 1,400,000 hours
Preventive maintenance: None required
16 Cheetah T10 SAS Product Manual, Rev. A
5.1.3 Seek errors
A seek error is defined as a failure of the drive to position the heads to the addressed track. After detecting an
initial seek error, the drive automatically performs an er ror recovery process. If the error recovery process fails,
a seek positioning error (Error code = 15h or 02h) will be reported with a Hardware error (04h) in the Sense
Key. Recoverable seek errors are specified at Less than 10 errors in 108 seek s. Unrecoverable seek errors
(Sense Key = 04h) are classified as drive failures.
5.1.4 Interface errors
An interface error is defined as a failure of the receiver on a port to recover the data as transmitted by the
device port connected to the receiver. The error may be detected as a running disparity error, illegal code, loss
of word sync, or CRC error.
5.2 Reliability and service
You can enhance the reliability of Cheetah disc drives by ensuring that the drive receives adequate cooling.
Section 6.0 provides temperature measurements and other information that may be used to enhance the ser-
vice life of the drive. Section 8.2 provides re commended air-flow information.
5.2.1 Mean time between failure (MTBF)
The production disc drive shall achieve a MTBF of 1,400,000 hours when operated in an environment that
ensures the HDA case temperatures specified in Section 6.4 are not exceeded. Short-term excursions up to
the specification limits of the operating environment will not affect MTBF performance. Conti nual or sustained
operation at case temperatures above the values shown in Section 6.4.1 may degrade product reliability.
The MTBF ta rget is specified as device power-on hours (POH) fo r all driv es in service per failure.
MTBF = Estimate power-on operating hours in the period
-----------------------------------------------------------------
Number of drive failures in the period
Estimated power-on operation hours means power-up hours per disc drive times the total number of disc
drives in service. Each disc drive shall have accumulated at least nine months of operation. Data shall be cal-
culated on a rolling average base for a minimum period of six months.
MTBF is based on the following assump tions:
• 8,760 power-on hours per year.
• 250 average on/off cycles per year.
• Operations at nominal vol tages.
• Systems will provide adequate cooling to ensure the case temperatures specified in Section 6.4.1 are not
exceeded.
Drive failure means any stoppage or substandard performance caused by drive malfunction.
A S.M.A.R.T. predictive failure indicates that the drive is deteriorating to an imminent failure and is considered
an MTBF hit.
5.2.2 Preventive maintenance
No routine scheduled preventive maintenance is required.
Cheetah T10 SAS Product Manual, Rev. A 17
5.2.3 Hot plugging the drive
When a disc is powered on by switching the power or hot plugged, the drive runs a self test before attempting
to communicate on its’ interfaces. When the self test completes successfully, the drive initiates a Link Reset
starting with OOB. An attached device should respond to the link reset. If the link reset attempt fails, or any
time the drive looses sync, the drive initiated link reset. The drive will initiate link reset once per second but
alternates between port A and B. Therefore each port will attempt a link reset once per 2 seconds assuming
both ports are out of sync..
If the self-test fails, the does not respond to link reset on the failing port.
Note. It is the responsibility of the syst ems integrator to assure that no temperature, energy, voltage haz-
ard, or ESD potential hazard is presented during the hot connect/disconnect operation. Discharge
the static electricity from the drive carrier prior to inserting it into the system.
Caution. The drive motor must come to a complete stop prior to changi ng the plane of operation . This time is
required to insure data integrity.
5.2.4 S.M.A.R.T.
S.M.A.R.T. is an acronym for Self-Monitoring Analysis and Reporting Technology. This technology is intended
to recognize conditions that indicate imminent drive failure and is designed to provide sufficient warning of a
failure to allow you to back up the dat a before an actual failure occurs.
Note. The drive’ s firmware monitors specific attributes for degradation ov er time but can’t predict inst anta-
neous drive failures.
Each monitored attribute has been selected to monitor a specific s et of failure conditions in the operating per-
formance of the drive and the thresholds are optimized to minimize “false” and “failed” predictions.
Controlling S.M.A.R.T.
The operating mode of S.M.A.R.T. is controlled by the DEXCP T and PERF bit s on the Informa tional Exceptions
Control mod e page (1Ch). Use the DEX CPT bit to enable or disable t he S.M.A.R.T. feature. Setting the DEX-
CPT bit disables all S.M.A.R.T. functions. When enabled, S.M.A.R.T. collect s on-line data as the d rive performs
normal read and write operations. When the PERF bit is set, the drive is considered to be in “On-line Mode
Only” and will not perform off-line functions.
You can measure off-line attributes and force the drive to save the data by using the Rezero Unit command.
Forcing S.M.A.R.T. resets the timer so that the next scheduled interrupt is in two hours.
You can interrogate the drive through the host to determine the time r emaining before the ne xt scheduled mea -
surement and dat a logging pro cess occurs. To accomplish this, issue a Log Sense command to log p age 0x3E.
This allows you to control when S.M.A.R.T. interruptions occur. Forcing S.M.A.R.T. with the RTZ command
resets the timer.
Performance impact
S.M.A.R.T. attribute data is save d to the disc so th at the events that cause d a predictive fa ilure can be recre -
ated. The drive measures and saves parameters once every two hours subject to an idle period on the drive
interfaces. The process of measuring off -line attribute d ata and saving data to the dis c is uninterruptable. T he
maximum on-line only processing delay is summarized below:
Maximum processing delay
On-line only delay
DEXCPT = 0, PERF = 1 Fully-enabled delay
DEXCPT = 0, PERF = 0
S.M.A.R.T. delay times 42 milliseconds 163 milliseconds
18 Cheetah T10 SAS Product Manual, Rev. A
Reporting contro l
Reporting is controlled by the MRIE bits in the Informational Exceptions Control mode page (1Ch). Subject to
the reporting method, the firmware will issue to the host an 01-5Dxx sense code. The error code is preserved
through bus resets and power cycles.
Determining rate
S.M.A.R.T. monitors the rate at which erro rs occur and sig nals a pred ictive fa ilure if the ra te of deg raded er rors
increases to a n unaccep table level. To determine rate, error events are logged and compare d to the number of
total operations for a given attribute. The interval defines the number of op eration s over which to m easur e the
rate. The counter that keeps track of the current number of operations is referred to as the Interval Counter.
S.M.A.R.T. measures error rates. All errors for each monitored attribute are recorded. A counter keeps track of
the number of erro r s for the current interval. This counter is referred to as the Failure Counter.
Error rate is the number of er rors per operation . The algori thm that S.M.A.R.T. uses to reco rd rates of error is to
set thresholds for the number of errors and their interval. If the number of errors exceeds the threshold before
the interval expires, the error rate is considered to be unacceptable. If the number of errors does not exceed
the threshold before the interval expires, the error rate is considered to be acceptable. In either case, the inter-
val and failure counters are reset and the process starts over.
Predictive failures
S.M.A.R.T. signals predictive failures when the drive is performing unacceptably for a period of time. The firm-
ware keeps a running count of the number of times the error rate for each attribute is unacceptable. To accom-
plish this, a cou nter is incremented e ach time the erro r rate is unacceptable and decremented (not to exceed
zero) whenever the error rate is acceptable. If the counter continually increments such that it reaches the pre-
dictive threshold, a predictive failure is signaled. This counter is referred to as the Failure History Counter.
There is a separate Failure History Counter for each at tribute.
5.2.5 Thermal monitor
Cheetah drives implement a temperature warning system which:
1. Signals the host if the temperature exceeds a value which would threaten the drive.
2. Signals the host if the temperature exceeds a user-specified value.
3. Saves a S.M.A.R.T. data frame on the drive which exceeds the threatening temperature value.
A temperature sensor monitors the drive temperature and issues a warning over the interface when the tem-
perature exceeds a set threshold. The temperatur e is measured at power-up and then at ten-minute in tervals
after power-up.
The thermal monitor system generates a warning code of 01-0B01 when the temperature exceeds the speci -
fied limit in compliance with the SCSI standard. The drive temperature is reported in the FRU code field of
mode sense dat a. You can use this information to determine if the warning is due to the temperature exceeding
the drive threatening temperature or the user-specified temperature.
This feature is controlled b y th e Enable Warning (EWasc) bit, and the reporting mechanism is con trolled b y the
Method of Reporting Informational Exceptions field (MRIE) on the Informational Exceptions Control (IEC)
mode page (1Ch).
The current algorithm implements two temperature trip points. The first trip point is set at 68°C which is the
maximum temperature limit according to the drive specificat ion. The second trip point is user-selectable using
the Log Select command. The reference temperature parameter in the temperature log page (see Table 1) can
Cheetah T10 SAS Product Manual, Rev. A 19
be used to set this trip point. The default va lue for this drive is 6 8°C, howe ver, you can set it to any value in the
range of 0 to 68°C. If you specify a temperature greater than 68°C in this field, the temperature is rounded
down to 68°C. A sense code is sent to the host to indicate the rounding of the parame ter field.
5.2.6 Drive Self Te st (DST )
Drive Self Test (DST) is a technology designed to recognize drive fault conditions that qualify the drive as a
failed unit. DST validates the functionality of the drive at a system level.
There are two test coverage options implemented in DST:
1. Extended test
2. Short text
The most thorough option is the extended test that performs various tests on the drive a nd scan s ev er y lo gic al
block address (LBA) of the drive. The short test is time-restricted and limited in length—it does not scan the
entire media surface, but does some fundamental tests and scans portions of the media.
If DST encounters an error during either of these tests, it reports a fault condition. If the drive fails the test,
remove it from service and return it to Seagate for service.
5.2.6.1 DST failure definition
The drive will present a “diagnostic failed” condition through the self-tests results value of the diagnostic log
page if a functional failure is encountered during DST. The channel and servo parameters are not modified to
test the drive more stringently, and the number of retries are not reduced. All retries and recovery processes
are enabled during the test. If dat a is recoverable, no failure condition will be reported regardless of the number
of retries required to recover the data.
The following conditions are considered DST failure conditions:
• Seek error after retries are exhausted
• Track-follow error after retries are exhausted
• Read error after retrie s ar e ex ha usted
• Write error after retries are exhausted
Recovered errors will not be reported as diagnostic failures.
5.2.6.2 Implementation
This section provides all of the information necessary to implement the DST function on this drive.
Table 1: Temperature Log Page (0Dh)
Parameter Code Description
0000h Primary Temperature
0001h Reference Temperature
20 Cheetah T10 SAS Product Manual, Rev. A
5.2.6.2.1 State of the drive prior to testing
The drive must be in a ready state before issuing the Send Diagnostic command. There are multiple reasons
why a drive may not be ready, some of which are valid conditions, and not errors. For exampl e, a dr ive may b e
in process of doing a format, or another DST. It is the responsibility of the host application to determine the “not
ready” cause.
While not technically part of DST, a Not Ready condition also qualifies the drive to be returned to Seagate as a
failed drive.
A Drive Not Ready condition is reported by the drive under the following conditions:
• Motor will not spin
• Motor will not lock to speed
• Servo will not lock on track
• Drive cannot read configuration tables from the disc
In these conditions, the drive responds to a Test Unit Ready command with an 02/04/00 or 02/04/03 code.
5.2.6.2.2 Invoking DST
To invoke DST, submit the Send Diagnostic command with the appropriate Function Code (001b for the short
test or 010b for the extended test) in bytes 1, bits 5, 6, and 7.
5.2.6.2.3 Short and extended tests
DST has two testing options:
1. short
2. extended
These testing options are described in the following two subsections.
Each test consists of three segments: an electrical test segm ent, a ser vo te st seg men t, an d a read/ve rify s can
segment.
Short test (Function Code: 001b)
The purpose of the short test is to provide a time-limited test that tests as much of the drive as possible within
120 seconds. The short test does not scan the entire media surface, but does some fundamental tests and
scans portions of the media. A complete read/verify scan is not performed and only factual failures will report a
fault condition. This option provides a quick confidence test of the drive.
Extended test (Function Code: 010b)
The objective of the extended te st option is to emp irically test critical drive components. For examp le, th e se ek
tests and on-track operations test the positioning mechanism. The read operation tests the read head element
and the media surface. The write element is tested through read/write/read operations. The integrity of the
media is checked through a read/verify scan of the media. Motor functionality is tested by default as a part of
these tests.
The anticip ated length of the Extended test is reported through the Control Mode page.
5.2.6.2.4 Log page entries
When the drive begins DST, it creates a new entry in the Self-test Results Log page. The new entry is created
by inserting a new self- test pa rameter block at the beginni ng of the self-test r esults log p arameter section o f the
log page. Existing data will be moved to make room for the new parameter block. The drive reports 20 param-
eter blocks in the log page. If there are more than 20 parameter blocks, the least recent p arameter block will be
deleted. The new parameter block will be initialized as follows:
1. The Function Code field is set to the same value as sent in the DST command
Cheetah T10 SAS Product Manual, Rev. A 21
2. The Self-Test Results Value field is set to Fh
3. The drive will store the log page to non-volatile memory
After a self-test is complete or has been aborted, the drive updates the Self-Test Results Value field in its Self-
Test Results Log page in non-volatile memory. The host may use Log Sense to read the results from up to the
last 20 self-tests performed by the driv e. Th e se lf- te st r esults value is a 4-bit field that reports the results of the
test. If the field is set to zero, the drive passed with no errors dete cte d by the DST. If the field is not set to zero,
the test failed for the reason reported in th e field .
The drive will report the failure condition and LBA (if applicable) in the Self-test Results Log parameter. The
Sense key, ASC, ASCQ, and FRU are used to report the failure condition.
5.2.6.2.5 Abort
There are several ways to abort a diagnostic. You can use a SCSI Bus Re se t or a Bus Device Reset message
to abort the diagnostic.
You can abort a DST executing in background mode by using the abort code in the DST Function Code field.
This will cause a 01 (self-test aborted by the application client) code to appear in the self-test results values
log. All other abort mechanisms will be reported as a 02 (self-test routine was interrupted by a reset condition).
5.2.7 Product warranty
Beginning on the date of shipment to the customer and continuing for the period specified in your purchase
contract, Seagate warrants that ea ch product (including components and subassemblies) that fails to function
properly under normal use du e to defect in mate rials or workman ship or due to n onconformance to the applica -
ble specifications will be repaired or replaced, at Seagate’s option and at no charge to the cu stomer, if returned
by customer at customer’s expense to Seagate’s designated facility in accordance with Seagate’s warranty
procedure. Seagate will pay for transporting the repair or replacement item to the customer. For more detailed
warranty information, refer to the standard terms and conditions of purchase for Seagate products on your pur-
chase docume n tation.
The remaining warranty for a particular drive can be determined by calling Seagate Customer Service at
1-800-468- 3472. You can also determ ine rema ining warr anty using the Seagate web site (www.seagate.com).
The drive serial number is required to determine remaining warranty information.
Shipping
When transporting or shipping a drive, use only a Seagate-approved container. Keep your original box.
Seagate approved con tainers are easily identified by the Seagat e Ap proved Package la bel. Shipp ing a dr ive i n
a non-approved container voids the drive warranty.
Seagate repair centers may refuse receipt of components improperly packaged or obviously damaged in tran-
sit. Contac t your authorized Seagate distributor to purchase additional boxes. Seagate recommends shipping
by an air-ride carrier experienced in handling computer equipment.
Product repair and return information
Seagate customer service centers are the only facilities authorized to service Seagate drives. Seagate does
not sanction any third-party repair facilities. Any unauthorized repair or tampering with the factory seal voids
the warranty.
22 Cheetah T10 SAS Product Manual, Rev. A
Cheetah T10 SAS Product Manual, Rev. A 23
6.0 Physical/electrical specifications
This section provides information relating to the physical and electrical characteristics of the drive.
6.1 AC power requirements
None.
6.2 DC power requirements
The voltage and current requirements for a single drive are shown below. Values indicated apply at the drive
connector.
0.15A DC and 0.2A AC 12V max start current margin added.
Table 2: ST3300555SS DC power requirements
Notes
ST3300555SS
1.5 Gbit mode ST3300555SS
3 Gbit mode
(Amps) (Amps) (Amps) (Amps)
Voltage +5V +12V [2] +5V +12V [2]
Regulation [5] ±5% ±5% [2] ±5% ±5% [2]
Avg idle current DCX [1] [6] 0.79 0.85 0.78 0.86
Maximum starting current
(peak DC) DC 3σ[3] 0.90 1.98 0.89 1.97
(peak AC) AC 3σ[3] 1.19 3.32 1.21 3.28
Delayed motor start (max) DC 3σ[1] [4] 0.65 0.03 0.68 0.03
Peak operating current:
Typical DCX [1] 0.78 1.02 0.81 1.03
Maximum DC 3σ[1] 0.80 1.04 0.83 1.05
Maximum (peak) DC 3σ1.58 2.86 1.58 2.82
24 Cheetah T10 SAS Product Manual, Rev. A
0.15A DC and 0.2A AC 12V max start current margin added..
0.15A DC and 0.2A AC 12V max start current margin added.
[1] Measured with average reading DC ammeter or equivalent sampling scope. Instantaneous +12V current
peaks will exceed these values. Power supply at nominal voltage. N (number of drives tested) = 6, 35
Table 3: ST3146755SS DC power requirements
Notes
ST3146755SS
1.5 Gbit mode ST3146755SS
3 Gbit mode
(Amps) (Amps) (Amps) (Amps)
Voltage +5V +12V [2] +5V +12V [2]
Regulation [5] ±5% ±5% [2] ±5% ±5% [2]
Avg idle current DCX [1] [6] 0.80 0.57 0.78 0.57
Maximum starting current
(peak DC) DC 3σ[3] 0.87 2.12 0.87 1.93
(peak AC) AC 3σ[3] 1.20 3.49 1.21 3.45
Delayed motor start (max) DC 3σ[1] [4] 0.64 0.03 0.68 0.03
Peak operating current:
Typical DCX [1] 0.78 0.76 0.81 0.76
Maximum DC 3σ[1] 0.78 0.78 0.82 0.78
Maximum (peak) DC 3σ1.60 2.54 1.62 2.62
Table 4: ST373355SS DC power requirements
Notes
ST373355SS
1.5 Gbit mode ST373355SS
3 Gbit mode
(Amps) (Amps) (Amps) (Amps)
Voltage +5V +12V [2] +5V +12V [2]
Regulation [5] ±5% ±5% [2] ±5% ±5% [2]
Avg idle current DCX [1] [6] 0.78 0.44 0.77 0.44
Maximum starting current
(peak DC) DC 3σ[3] 0.84 1.91 0.84 1.91
(peak AC) AC 3σ[3] 1.18 3.17 1.12 3.23
Delayed motor start (max) DC 3σ[1] [4] 0.66 0.03 0.66 0.03
Peak operating current:
Typical DCX [1] 0.75 0.64 0.78 0.63
Maximum DC 3σ[1] 0.77 0.65 0.80 0.66
Maximum (peak) DC 3σ1.50 2.32 1.54 2.32
Cheetah T10 SAS Product Manual, Rev. A 25
Degrees C ambient .
[2] For +12 V, a –10% tolerance is allowed during initial spindle start but must return to ±5% before reaching
15,000 RPM. The ±5% must be maintained after the drive signifies that its power-up sequence has been
completed and th at the dr ive is able to acce pt selectio n by the host initiator.
[3] See +12V current profile in Figures 2, 3, and 4.
[4] This condition occurs after OOB and Speed Negotiation completes but before the drive has received the
Notify Spinup primitive.
[5] See paragraph 6.2.1, "Conducted noise immunity." Specified voltage tolerance includes ripple, noise, and
transient response.
[6] During idle, the drive heads are relocated every 60 seconds to a random location within the band from
three-quarters to maximum track.
General DC power requirement notes.
1. Minimum curr ent loading for each supply vo ltage is not less than 1.7% of the maximum operating current
shown.
2. The +5V and +12V supplies should employ separate ground returns.
3. Where power is provided to multiple drives from a common supply, careful consideration for individual
drive power requirements should be noted. Where multiple units are powered on simultaneously, the peak
starting current must be available to each device.
4. Parameters, other than spindle start, are measured after a 10-minute warm up.
5. No terminator power.
6.2.1 Conducted noise immunity
Noise is specified as a periodic and random distribution of frequencies covering a band from DC to 10 MHz.
Maximum allowed noise values given below are peak-to-peak measurements and apply at the drive power
connector.
6.2.2 Power sequencing
The drive does not require power sequencing. The drive protects against inadvertent writing during power-up
and down.
6.2.3 Current profiles
The +12V and +5V current profiles for these drive are shown below in the following figures.
Note: All times and currents are typical. See Tables 2, 3, and 4 for maximum current requirements.
+5V +12V
0 to 100 kHz 150mV 150mV
100 kHz to 10 MHz 100mV 100mV
26 Cheetah T10 SAS Product Manual, Rev. A
Figure 2. Typical ST3300555SS drive current profiles
Cheetah T10 SAS Product Manual, Rev. A 27
Figure 3. Typical ST3146755SS drive current pr ofiles
28 Cheetah T10 SAS Product Manual, Rev. A
Figure 4. Typical ST373355SS drive current profiles
Cheetah T10 SAS Product Manual, Rev. A 29
6.3 Power dissipation
ST3300555SS in 3 Gbit operation
Typical power dissipation under idle conditions in 3Gb operation is 14.22 watts (48.52 BTUs per hour).
To obtain oper ating power for typical random read operations, refer to the following I/O rate curve (see Figure
5). Locate the typical I/O ra te for a drive in y our system on the horizontal axis and read the corresponding +5
volt current, +12 volt current, and total watts on the vertical axis. To calculate BTUs per hour, multiply watts by
3.4123.
Figure 5. ST3300555SS (3 Gbit) DC current and power vs. input/output operations per second
ST3300555SS in 1.5 Gbit operation
Typical power dissipation under idle conditions in 1.5 Gbit operation is 14.15 watts (48.28 BTUs per hour).
To obtain oper ating power for typical random read operations, refer to the following I/O rate curve (see Figure
5). Locate the typical I/O ra te for a drive in y our system on the horizontal axis and read the corresponding +5
volt current, +12 volt current, and total watts on the vertical axis. To calculate BTUs per hour, multiply watts by
3.4123.
Figure 6. ST3300555SS (1.5 Gbit) DC current and power vs. input/output operations per second
CURRE NT/POWER vs THROUG H PUT (SAS - 3.0G B)
R andom 8 B lock Reads
0.000
0.200
0.400
0.600
0.800
1.000
1.200
1.400
0.0 50.0 100.0 150.0 200.0 250.0 300.0
I /Os per Second
Amperes
0.00
2.00
4.00
6.00
8.00
10 .0 0
12 .0 0
14 .0 0
16 .0 0
18 .0 0
Power (watts)
5Volt A
12 V o l t A
Watts
CURRENT/POWER vs THROUG HPUT (SAS - 1.5G B)
Random 8 Block Reads
0.000
0.200
0.400
0.600
0.800
1.0 0 0
1.2 0 0
1.4 0 0
0.0 50.0 100.0 150.0 200.0 250.0 300.0
I /Os per Second
Amperes
0.00
2.00
4.00
6.00
8.00
10 . 0 0
12 . 0 0
14 . 0 0
16 . 0 0
18 . 0 0
Power (watts)
5Volt A
12 V o l t A
Watts
30 Cheetah T10 SAS Product Manual, Rev. A
ST3146755SS in 3 Gbit operation
Typical power dissipation under idle conditions in 3Gb operation is 10.74 watts (36.65 BTUs per hour).
To obtain oper ating power for typical random read operations, refer to the following I/O rate curve (see Figure
5). Locate the typical I/O ra te for a drive in y our system on the horizontal axis and read the corresponding +5
volt current, +12 volt current, and total watts on the vertical axis. To calculate BTUs per hour, multiply watts by
3.4123.
Figure 7. ST3146755SS (3 Gbit) DC current and power vs . input/output operations per second
ST3146755SS in 1.5 Gbit operation
Typical power dissipation under idle conditions in 1.5 Gbit operation is 10.84 watts (36.99 BTUs per hour).
To obtain oper ating power for typical random read operations, refer to the following I/O rate curve (see Figure
5). Locate the typical I/O ra te for a drive in y our system on the horizontal axis and read the corresponding +5
volt current, +12 volt current, and total watts on the vertical axis. To calculate BTUs per hour, multiply watts by
3.4123.
Figure 8. ST3146755SS (1.5 Gbit) DC current and power vs. input/output operations per second
CURRENT/POWER vs THROUG HPUT (SAS - 3.0GB)
Random 8 Block R eads
0.000
0.200
0.400
0.600
0.800
1.0 0 0
1.2 0 0
1.4 0 0
0.0 50.0 100.0 150.0 200.0 250.0 300.0
I/Os per Second
Amperes
0.00
2.00
4.00
6.00
8.00
10 .0 0
12 .0 0
14 .0 0
Power (watts)
5Volt A
12 V o l t A
Watts
CURRE NT/POWE R vs THROUG HPUT (SAS - 1.5G B)
Random 8 Block R eads
0.000
0.200
0.400
0.600
0.800
1.000
1.200
1.400
0.0 50.0 100.0 150.0 200.0 250.0 300.0
I/Os per Second
Amperes
0.00
2.00
4.00
6.00
8.00
10 .0 0
12 .0 0
14 .0 0
Power (watts)
5Volt A
12 V o l t A
Watts
Cheetah T10 SAS Product Manual, Rev. A 31
ST373355SS in 3 Gbit operation
Typical power dissipation under idle conditions in 3Gb operation is 9.13 watts (31.15 BTUs per hour).
To obtain oper ating power for typical random read operations, refer to the following I/O rate curve (see Figure
5). Locate the typical I/O ra te for a drive in y our system on the horizontal axis and read the corresponding +5
volt current, +12 volt current, and total watts on the vertical axis. To calculate BTUs per hour, multiply watts by
3.4123.
Figure 9. ST373355SS (3 Gbit) DC current and power vs. input/output operations per second
ST373355SS in 1.5 Gbit operation
Typical power dissipation under idle conditions in 1.5 Gbit operation is 9.18 watts (31.32 BTUs per hour).
To obtain oper ating power for typical random read operations, refer to the following I/O rate curve (see Figure
5). Locate the typical I/O ra te for a drive in y our system on the horizontal axis and read the corresponding +5
volt current, +12 volt current, and total watts on the vertical axis. To calculate BTUs per hour, multiply watts by
3.4123.
Figure 10. ST373355SS (1.5 Gbit) DC current and power vs. input/output operations per second
CURRENT/POWER vs THROUG HPUT (SAS - 3.0GB)
Random 8 Block R eads
0.000
0.200
0.400
0.600
0.800
1.0 0 0
1.2 0 0
1.4 0 0
0.0 50.0 100.0 150.0 200.0 250.0 300.0
I/Os per Second
Amperes
0.00
2.00
4.00
6.00
8.00
10 .0 0
12 .0 0
14 .0 0
Power (watts)
5Volt A
12 V o l t A
Watts
CURRENT/POWER vs THROUG HPUT (SAS - 1.5G B)
Random 8 Block Reads
0.000
0.200
0.400
0.600
0.800
1.000
1.200
1.400
0.0 50.0 100.0 150.0 200.0 250.0 300.0
I/Os per Second
Amperes
0.00
2.00
4.00
6.00
8.00
10 . 0 0
12 . 0 0
14 . 0 0
Power (watts)
5Volt A
12 V o l t A
Watts
32 Cheetah T10 SAS Product Manual, Rev. A
6.4 Environmental limits
Temperature and humidity values experienced by the drive must be such that condensation does not occur on
any drive part. Altitude and atmospheric pressure specifications are referenced to a standard day at 58.7°F
(14.8°C). Maximum wet bulb temperature is 82°F (28°C).
6.4.1 Temperature
a. Operating
The maximum allowable continuous or sustained HDA case temperature for the rated MTBF is 122°F
(50°C) The maximum allowable HDA case temperature is 60 °C. Occasional excursions of HDA case tem-
peratures above 122°F (50°C) or below 41°F (5°C) may occur without impac t to specified MTBF. Continual
or sustained operation at HDA case temperatures outside the se limits may degrade MTBF.
Provided the HDA case temperatures limits are met, the drive meets all specifications over a 41°F to 131°F
(5°C to 55°C) drive ambient temperature range with a maximum temperature gradient of 36°F (20°C) per
hour. Air flow may be needed in the drive enclosure to keep within this range (see Section 8.3). Operation at
HDA case temperatures outside this range may adversely affect the drives ability to meet specifications. To
confirm that the required cooling for the electronics and HDA case is provided, place the drive in its final
mechanical configuration, perform random write/read operations and measure the HDA case temperature
after it has stabilized.
b. Non-operating
–40° to 158°F (–40° to 70°C) package ambient with a maximum gradient of 36°F (20°C) per hour. This
specification assumes that the dr ive is p ackaged in the ship ping conta iner designed b y Seagate for use with
drive.
Figure 11. Location of the HDA temperature check point
HDA Temp.
Check Point
.5"
1.0"
Cheetah T10 SAS Product Manual, Rev. A 33
6.4.2 Relative humidity
The values below assume that no condensation on the drive occurs.
a. Operating
5% to 95% non-condensing re lative humidity with a maximum gradient of 20% per hour.
b. Non-operating
5% to 95% non-condensing relative humidity.
6.4.3 Effective altitude (sea level)
a. Operating
–1,000 to +10,000 feet (–30 5 to +3,048 meters)
b. Non-operating
–1,000 to +40,000 feet (–305 to +12,210 meters)
6.4.4 Shock and vibration
Shock and vibration limits specified in this document are meas ured directly on the drive chassis. If the drive is
installed in an enclosure to whic h the stated shock and/or vibration criteria is applied, resonances may occur
internally to the e nclosure resulting in drive move ment in excess of the stated limits. If this situation is apparent,
it may be necessary to modify the enclosure to minimize drive movement.
The limits of shock and vibration defined within this document are specified with the drive mounted by any of
the four methods shown in Figure 12, and in accordance with the restrictions of Section 8.3.
6.4.4.1 Shock
a. Operating—normal
The drive, as inst alled for normal op eration, shall operate e rror free while su bjected to intermittent shock not
exceeding 15 Gs at a maximum duration of 11 msec (half sinewave). The drive, as installed for normal
operation, shall operate error fre e while subjected to intermittent shock not exceeding 60 Gs at a maximum
duration of 2 msec (half sinewave). Shock may be applied in the X, Y, or Z axis.
b. Operating—abnormal
Equipment, as installed for normal operation, does not incur physical damage while subjected to intermit-
tent shock not exceeding 40 Gs at a maximum duration of 11 msec (half sinewave). Shock occurring at
abnormal levels may promote degraded operational performance durin g the abnormal shock period. Speci-
fied operational performance will continue when normal operating shock levels resume. Shock may be
applied in the X, Y, or Z axis. Shock is not to be repeated more than two times per second.
c. Non-operating
The limits of non-operating shock shall apply to all conditions of handling and transportation. This includes
both isolated drives and integrated drives.
The drive subjected to nonrepetitive shock not exceeding 75 Gs at a maximum duration of 11 msec (half
sinewave) shall not exhibit device damage or performa nce degra dation. Shoc k may be applied in the X, Y,
or Z axis.
The drive subjected to nonrepetitive shock not exceeding 250 Gs at a maximum duration of 2 msec (half
sinewave) does not exhibit device damage or performance degradation. Shock may be applied in the X, Y,
or Z axis.
The drive subjected to no nrepetitve shock not exceeding 120 Gs at a maximum duration of 0.5 msec (half
sinewave) does not exhibit device damage or performance degradation. Shock may be applied in the X, Y,
or Z axis.
34 Cheetah T10 SAS Product Manual, Rev. A
d. Packaged
Disc drives shipped as loose load (not palletized) general freight will be packaged to withstand drops from
heights as defined in the table below. For additional details refer to Seagate specifications 30190-001
(under 100 lbs/45 kg) or 30191-001 (over 100 lbs/45 Kg).
Drives packaged in single or multipacks with a gross weight of 20 pounds (8.95 kg) or less by Seagate for
general freight shipment shall withstand a drop test from 48 inches (1,070 mm) against a concrete floor or
equivalent.
Figure 12. Recommended mounting
Package size Packaged/product weight Drop height
<600 cu in (<9,800 cu cm) Any 60 in (1524 mm)
600-1800 cu in (9,800-19,700 cu cm) 0-20 lb (0 to 9.1 kg) 48 in (1219 mm)
>1800 cu in (>19,700 cu cm) 0-20 lb (0 to 9.1 kg) 42 in (1067 mm)
>600 cu in (>9,800 cu cm) 20-40 lb (9.1 to 18.1 kg) 36 in (914 mm)
Z
Y
X
ZY
X
Cheetah T10 SAS Product Manual, Rev. A 35
6.4.4.2 Vibration
a. Operating—normal
The drive as installed for normal operation, shall comply with the complete specified performance while
subjected to continuous vibration not exceeding
10-500 Hz @ 0.5 G (zero to peak)
Vibr ation may be applied in the X, Y, or Z axis.
Operating normal translational random flat profile
10 - 500 Hz 0.4 gRMS
b. Operating—abnormal
Equipment as installed for normal operation shall not incur physical damage while subjected to periodic
vibration not exceeding:
15 minutes of duration at major resonant frequ ency
10-500 Hz @ 0.75 G (X, Y, or Z axis)
Vibration occurring at these levels may degrade operational performance during the abnormal vibration
period. Specified operational performance will continue when normal operating vibration levels are
resumed. This assumes system recovery routines are available.
Operating abnormal translational random flat profile
10 - 500 Hz 1.2 gRMS
c. Non-operating
The limits of non-operating vibration shall apply to all conditions of handling and transportation. This
includes both isolated dr ives and integrated drives.
The drive shall not incur physical damage or degraded performance as a result of continuous vibration not
exceeding
5-22 Hz @ 0.040 inches (1.02 mm) displacement (zero to peak)
22-500 Hz @ 2.00 G (zero to peak)
Vibr ation may be applied in the X, Y, or Z axis.
Non-operating translational random flat profile
10 - 500 Hz 1.2 gRMS
6.4.5 Air cleanlines s
The drive is designed to operate in a typical office environment with minimal environmental control.
6.4.6 Corros iv e en v iro nment
Seagate electronic drive components pass accelerated corrosion testing equivalent to 10 years exposure to
light industrial environments containing sulfurous gases, chlorine and nitric oxide, classes G and H per ASTM
B845. However, this accelerated testing cannot duplicate every potential ap plication environment.
Users should use caution exposing any electronic components to uncontrolled chemical pollutants and corro-
sive chemicals as electronic drive component reliability can be affected by the installation environment. The sil-
ver, copper, nickel and gold films used in Seagate products are especially sensitive to the presence of sulfide,
chloride, and nitrate cont aminant s. Sulfur is fou nd to be the mo st damaging. In a ddition, electro nic component s
should never be exposed to condensing water on the surface of the printed circuit board assembly (PCBA) or
exposed to an ambient relative humidity greater than 95%. Materials used in cabinet fabrication, such as vulca-
nized rubber, that can outgas corrosive compounds should be minim ized or eliminated. The useful life of any
electronic equipment may be extended by replacing materi als near circuitry with sulfide-free alternatives.
36 Cheetah T10 SAS Product Manual, Rev. A
6.4.7 Acoustics
Sound power during idle mode shall be 3.6 bels typical when measured to ISO 7779 specification. Sound
power while operating shall be 4.3 bels typical when measured to ISO 7779 specification.
There will not be any discrete tones more than 10 dB above the masking noise on typical drives when mea-
sured according to Seagate specification 30553-001. There w ill not be any tones more than 24 dB abov e the
masking noise on any drive.
6.4.8 Electromagnetic susceptibility
See Section 2.1.1.1.
6.5 Mechanical specifications
Refer to Figure 13 fo r de tailed physical dim e ns ion s. See Sect ion 8.3, “Drive mounting.”
Figure 13. Physical dimensions
Height: 1.028 in 26.11 mm
Width: 4.010 in 101.85 mm
Depth: 5.787 in 146.99 mm
Weight: 1.85 pounds 0.839 kilograms
26.11 MAX
(1.028 MAX) 2X 20.14
(2X .793)
6.35 (.250) 24.00
(.945)
2X 28.45
(2X 1.120)
2X 70.05 (2X 2.758)
122.00 (4.803)
2X 130.05 (2X 5.120)
0.36
( .014)
146.99 MAX (5.787 MAX)
131.17 (5.164)
85.60 (3.370)
41.15 (1.620)
2X 29.21
(2X 1.150)
1.45 (.057)
3.17 (.125)
20.14
(.793)
50.80
(2.000)
101.60 +/- .25
(4.000 +/- .010)
2X 100.13
(2X 3.942)
98.42
(3.875)
20.68 (.814)
33.40
(1.315)
0.76
( .030)
0.13
(.005)
0.13
(.005)
3.50 +/- .38
(.138 +/- .015)
0.25
(.010)
0.99
(.039)
0.41
(.016)
36.37
(1.432)
4.57 MIN BLIND
( .18 MIN BLIND)
0.36
( .014)
UNITS OF MEASURE: mm (inches)
DRIVE
CENTER
LINE
4.22 X 90 ( .166 X 90 )
4.22 X 90 ( .166 X 90 )
Cheetah T10 SAS Product Manual, Rev. A 37
7.0 Defect and error management
Seagate continues to use innovative technologies to manage defects and errors. These technologies are
designed to increase data integrity, perform drive self-maintenance, and validate proper drive operation.
SCSI defect and error management involves drive internal defect/error management and SAS system error
considerations (errors in communications between the initiator and the drive). In addition, Seagate provides
the following technologies used to increase data integrity and drive reliability:
• Background Media Scan (see Section 7.4)
• Media Pre-Sc an (see Sec t ion 7.5)
• Deferred Auto-Reallocation (see Section 7.6)
• Idle Read After Write (see Section 7.7)
The read error rates and specified storage capacities are not dependent on host (initiator) defect management
routines.
7.1 Drive internal defects/errors
During the initial drive format operat ion at the factory, media defects are identified, tagged as being unusable,
and their locations recorded on the drive primary defects list (referred to as the “P’ list and also as the ETF
defect list). At factory format time, these known defects are also reallocated, that is, reassigned to a new place
on the medium and the location listed in the defects reallocation table. The “P” list is not altered after factory
formatting. Locations of defects found and reallocated during error recovery procedures after drive shipment
are listed in the “G” list (defects growth list). The “P” and “G” lists may be re ferenced by the in itiator using the
Read Defect Data command.
Details of the SCSI commands supported by the drive are described in the SAS Interface Manual. Also, more
information on the drive Error Recovery philosophy is presented in the SAS Interface Manual.
7.2 Drive error recovery procedures
When an error occurs dur ing drive oper ation, the drive, if programmed to do so, p erforms error recovery pr oce-
dures to attempt to reco ver th e data. The error re cove ry p rocedures u sed dep end on the options pre viously set
in the Error Recovery Parameters mode page. Error recovery and defect management may involve using sev-
eral SCSI commands described in the SAS Interface Manual. The drive implements selectable error recovery
time limits required in video applications.
The error recovery scheme supported by the drive pro vides a way to control the tot al error recovery time for the
entire command in addition to controlling the recovery level for a single LBA. The total amount of time spent in
error recovery for a command can be limited using the Recovery Time Limit bytes in the Error Recovery mode
page. The total amount of time spent in error recovery for a single LBA can be limited using the Read Retry
Count or Write Retry Count bytes in the Error Recovery mode page.
38 Cheetah T10 SAS Product Manual, Rev. A
The drive firmware error recovery algorithms consists of 11 levels for read recoveries and five levels for write.
Each level may consist of multiple steps, where a step is defined as a recovery function involving a single re-
read or re-write attempt. The maximum level used by the drive in LBA recovery is determined by the read and
write retry counts.
Table 5 equates the read and write retry count with the maximum possible recovery time for read and write
recovery of individual LBAs. The times given do not include time taken to perform reallocations. Reallocations
are performed when the ARRE bit (for reads) or AWRE bit (for writes) is one, the RC bit is zero, and the recov-
ery time limit for the command has not yet been met. Time needed to perform reallocation is not counted
against the recovery time limit.
When the RC bit is one, reallocations are disabled even if the ARRE or AWRE bits are one. The drive will still
perform data recovery actions within the limits defined by the Read Retry Count, Write Retry Count, and
Recovery Time Limit parameters. However, the drive does not repor t any unrecovered errors.
[1] These values are subject to change.
Setting these retry counts to a value below the default setting could result in degradation of the unrecov-
ered error rate which may exceed the value given in this product manual. A setting of zero (0) will result i n
the drive not performing error recovery.
For example, suppose the read/write recovery page has the RC bit set to 0, read retry count set to 4, and
the recovery time limit field (Mode Sense page 01, bytes 10 and 11) set to FF FF hex (maximum). A four
LBA Read command is allowed to take up to 253.11 msec recovery time for each of the four LBAs in the
command. If the recovery time limit is set to 00 C8 hex (200 msec decimal) a four LBA read command is
allowed to take up to 200 msec for all error recovery within that command. The use of the Recovery Time
Limit field allows finer granularity on control of the time spent in error recovery. The recovery time limit
only starts counting when the drive is executing error recovery and it restarts on each command. There-
fore, each command’s t otal recovery time is subject to the recovery time limit. Note: A recovery time limit
of 0 will use the drive’s default value of FF FF. Minimum recovery time limit is achieved by setting the
Recovery Time Limit field to 00 01.
Table 5: Read and write retry count maximum recovery times
Read retry count1Maximum recovery time per
LBA (cumulative, msec) Write retry count1Maximum recovery time per
LBA (cumulative, msec)
051.87 023.94
159.85 135.91
2203.49 255.86
3219.45 367.83
4253.11 4119.79
5279.35 5 (default) 147.72
6311.27
7395.12
8463.12
9495.04
10 530.95
11 (default) 1,282.97
Cheetah T10 SAS Product Manual, Rev. A 39
7.3 SAS system errors
Information on the reporting of operational errors or faults across the interface is given in the SAS Interface
Manual. The SSP Response returns information to the host about numerous kinds of errors or faults. The
Receive Diagnostic Results reports the results of diagnostic operations performed by the drive.
Status returned by the drive to the initiator is described in the SAS Interface Manual. Status reporting plays a
role in systems error management and its use in that respect is described in sections where the various com-
mands are discussed.
7.4 Background Media Scan
Background Media Scan (BMS) is a self-initiated media scan. BMS is defined in the T10 document SPC-4
available from the T10 committee. BMS performs sequential reads across the entire pack of the media while
the drive is idle. In RAID ar rays, BMS allows hot spare drives to be scanned for defe cts prior to being put into
service by the host system. On regular duty drives, if the host system makes use of the BMS Log Page, it can
avoid placing data in suspect locations on the media. Unreadable and recovered error sites will be logged or
reallocated per ARRE/AWRE settings.
With BMS, the host system can consume less power and system overhead by only checking BMS status and
results rath er than tying up the b us and consuming p ower in the process of ho st-initiated media scanning activ-
ity.
Since the backgrou nd scan functions ar e only done during idle pe riods, BMS causes a ne gligible impact to sys-
tem performance. The first BMS scan for a newly manufactured drive is performed as quickly as possible to
verify the media and protect data by setting the “Start time after idle” to 5ms, all subsequent scans begin after
500ms of idle time. Other features that normally use idle time to function will function normally because BMS
functions for bursts of 800ms and then suspends activity for 100ms to allow other background functions to
operate.
BMS interrupts immediately to service host commands from the interf ace bus while performing reads. BMS will
complete any BMS-initiated error recovery prior to returning to service host-initiated commands. Overhead
associated with a return to host-servicing activity from BMS only impacts the first command that interrupted
BMS, this results in a typical delay of about 1 ms.
7.5 Media Pre-Scan
Media Pre-Scan is a feature that allows the drive to repair media errors that would otherwise have been found
by the host system during critical data accesses early in the drive’s life. The default setting for Media Pre-Scan
is enabled on standard products. Media Pre-Scan checks each write command to determine if the destination
LBAs have been scanned by BMS. If the LBAs have been verified, the drive proceeds with the normal write
command. If the LBAs have not been verified by BMS, Pre-Scan will convert the write to a write verify to certify
that the data was properly written to the disc.
Note. During Pre-Scan write verify commands, write performance may decrease by 50% until Pre-Scan
completes. Write performance testing should be performed after Pre-Scan is complete. This may
be checked by reading the BMS status.
To expedite the scan of the full pack and subsequently exit from the Pre-Scan period, BMS will begin scanning
immediately when the drive goes to idle during the Pre-Scan period. In the event that the drive is in a high
transaction traffic environment and is unable to complete a BMS scan within 24 power on hours BMS will dis-
able Pre-Scan to restore full performance to the system.
40 Cheetah T10 SAS Product Manual, Rev. A
7.6 Deferred Auto-Reallocation
Deferred Auto-Reallocation (DAR) simplifies reallocation algorithms at the system level by allowing the drive to
reallocate unreadable locations on a subsequent write command. Sites are marked for DAR during read oper-
ations performed by the drive. When a write command is received for an LBA marked for DAR, the auto-reallo-
cation process is invoked and attempts to rewrite the data to the original location. If a verification of this rewrite
fails, the sector is re-mapped to a spare location.
This is in contrast to the system having to use the Reassign Command to reassign a location that was unread-
able and then generate a write command to rewrite the data. DAR is most effective when AWRE and ARRE
are enabled—this is the default setting from the Seagate factory. With AWRE and ARRE disabled DAR is
unable to reallocate the failing location and will report an error sense code indicating that a write command is
being attempted to a previously failing location.
7.7 Idle Read After Write
Idle Read After W r ite (IRAW) utilizes idle time to verify the integrity of recently written data. During idle periods,
no active system requests, the drive reads recently written data from the media and compares it to valid write
command dat a re sid ent in the dr ive s data buffer. Any sectors that fail the co mp a rison result in the invocation of
a rewrite and auto-reallocation process. The process attempts to rewrite the data to the original location. If a
verification of this rewrite fails, the sector is re-mapped to a spare location.
Cheetah T10 SAS Product Manual, Rev. A 41
8.0 Installation
Cheetah disc drive installation is a plug-and-play process. There ar e no jumpers, switches, or terminators on
the drive.
SAS drives are designed to be used in a host system that provides a SAS-compatible backplane with bays
designed to accomodate the drive. In such systems, the host system typically provides a carrier or tray into
which you need to mou nt the drive. Mount the drive to the carrier or tray provided by the host system using four
6-32 UNC screws. Do not over-tighten or force the screws. You can mount the drive in any orientation.
Note. SAS drives are designed to be attached to the host system without I/O or power cables. If you
intend the use the drive in a non-backplane host system, connecting the drive using high-quality
cables is acceptable as long as the I/O cable length does not exceed 4 meters (13.1 feet).
Slide the carrier or tra y into the app ropr iate bay in you r host system using the instructions provided by the host
system. This connects the drive directly to your system’s SAS connector. The SAS connector is normally
located on a SAS backpanel. See Section 9.4.1 for additional information about these connectors.
Power is supplied through the SAS connector.
The drive is shipped from the factory low-level formatted in 512-byte logical blocks. You need to reformat the
drive only if you want to select a different logical block size.
Figure 14. Physical interface
8.1 Drive orientation
The drive may be mounted in any orientation. All drive performance characterizations, however, have been
done with the drive in horizontal (discs level) and vertical (drive on its side) orientations, which are the two pre-
ferred mounting orientations.
SAS Interface
connector
42 Cheetah T10 SAS Product Manual, Rev. A
8.2 Cooling
Cabinet cooling must be designed by the customer so that the a mbient temperat ure immediately surrounding
the drive will not exceed temperature conditions specified in Section 6. 4. 1, "Temperature."
The rack, cabinet, or drawer environment for the drive must provide heat removal from the electronics and
head and disc assembly (HDA). You should confirm that adequate heat removal is provided using the temper-
ature measurement guidelines described in Section 6.4.1.
Forced air flow m ay be req uired to keep t emperat ures at or below the tem peratur es specifie d in S ection 6.4.1
in which case the drive should b e oriented, o r air flow dir ected, so th at the least amount of air flow resist ance is
created while providing air flow to the electronics and HDA. Also, the shortest possible path between the air
inlet and exit should be chosen to minimize the travel length of air heated by the drive and other heat sources
within the rack, cabinet, or drawer environment.
If forced air is determined to be necessary, possible air-flow patterns are shown in Figure 15. The air-flow pat-
terns are created by one or more fans, either forcing or drawing air as shown in the illustrations. Conduction,
convection, or other forced air-flow patterns are acceptable as long as the temperature measurement guide-
lines of Section 6.4.1 are met.
Figure 15. Air flow
Above unit
Under unit
Note. Air flows in the direction shown (back to front)
or in reverse direction (front to back)
Above unit
Under unit
Note. Air flows in the direction shown or
in reverse direction (side to side)
Cheetah T10 SAS Product Manual, Rev. A 43
8.3 Drive mounting
Mount the drive usin g the bottom or side mounting hole s. If you mou nt the drive using th e bottom holes, ensure
that you do not physically distort the drive by attempting to mount it on a stiff, non-flat surface.
The allowable mountin g surface stiffness is 80 lb/in (14.0 N/mm). The following equation and paragraph define
the allowable mounting surface stiffness:
where K is the mounting surface stiffness (units in lb/in or N/mm) and X is the out-of-plane surface distortion
(units in inches or millimeters). The out-of-plane distortion (X) is determined by defining a plane with three of
the four mounting points fixed and evaluating the out-of-plane deflection of the fourth mounting point when a
known force (F) is applied to the fourth point.
8.4 Grounding
Signal ground (PCBA) and HDA ground are connected together in the drive and cannot be separated by the
user. The equipment in which the drive is mounted is connected directly to the HDA an d PCBA wi th no ele ctri -
cally isolating shock mounts. If it is desired for the system chassis to not be connected to the HDA/PCBA
ground, the systems integrator or user must provide a nonconductive (electrically isolating) method of mount-
ing the drive in th e host equipment.
Increased radiated emissions may result if you do not provide the maximum surface area ground connection
between system ground and drive ground. This is the system designer’s and integrator’s responsibility.
K x X = F < 15lb = 67N
44 Cheetah T10 SAS Product Manual, Rev. A
Cheetah T10 SAS Product Manual, Rev. A 45
9.0 Interface requirements
This section partially descr ibe s the inter face re quir em ents as implemented on Cheetah drives. Additional infor-
mation is provided in the SAS Interface Manual (part number 100293071).
9.1 SAS features
This section lists the SAS-specific features supported by Cheetah drives.
9.1.1 task management functions
Table 6 lists the SAS task management functions supported.
9.1.2 task management responses
Table 7 lists the SAS response codes returned for task management functions supported.
Table 6: SAS task management functions supported
Task name Supported
Abort Task Yes
Clear ACA Yes
Clear task set Yes
Abort task set Yes
Logical Unit Reset Yes
Query Task Yes
Table 7: Task management response codes
Function name Res ponse code
Function complete 00
Invalid frame 02
Function not supported 04
Function failed 05
Function succeeded 08
Invalid logical unit 09
46 Cheetah T10 SAS Product Manual, Rev. A
9.2 Dual port support
Cheetah SAS drives have two independent port s. These ports may be connected in the same or dif ferent SCSI
domains. Each drive port has a unique SAS address.
The two ports run at the same link rate. The first port to successfully complete speed negotiation sets the link
rate support by both ports. When the second port participates in speed negotiation, it indicates the only sup-
ported speed is the speed selected by the first po rt. If the first port to complete speed negotiation looses sync
before the second port completes speed negotiation, both ports revert back to the power on condition of allow-
ing either link rate (1.5 or 3.0 Gbits/sec).
Subject to buffer availability, the Cheetah drives support:
• Concurrent port transfers—The drive supports receiving COMMAND, TASK management transfers on both
ports at the same time.
• Full duplex—The drive supports sending XFER_RDY, DATA and RESPONSE transfers while receiving
frames on both ports.
Cheetah T10 SAS Product Manual, Rev. A 47
9.3 SCSI commands supported
Table 8 lists the SCSI commands supported by Cheetah drives.
Table 8: Commands supported by Cheetah T10 SAS family drives
Command name Command code Supported
Change Definition 40h N
Compare 39h N
Copy 18h N
Copy and Verify 3Ah N
Format Unit [1] 04h Y
DPRY bit supported N
DCRT bit supported Y
STPF bit supported Y
IP bit supported Y
DSP bit supported Y
IMMED bit supported Y
VS (vendor specific) N
Inquiry 12h Y
Date Code page (C1h) Y
Device Behavior page (C3h) Y
Firmware Numbers page (C0h) Y
Implemented Opera ting Def page (81h) Y
Jumper Settings p age (C2h) Y
Supported Vital Product Data page (00h) Y
Unit Serial Number page (80h) Y
Lock-unlock cache 36h N
Log Select 4Ch Y
PCR bit Y
DU bit N
DS bit Y
TSD bit Y
ETC bit N
TMC bit N
LP bit N
Log Sense 4Dh Y
Application Client Log page (0Fh) Y
Buffer Over-run/Under-run page (01h) N
Cache Statistics page (37h) Y
Factory Log page (3Eh) Y
Last n Deferred Errors or Asynchronous Events page (0Bh) N
Last n Error Events page (07h) N
48 Cheetah T10 SAS Product Manual, Rev. A
Non-medium Error page (06h) Y
Pages Supported list (00h) Y
Read Error Counter page (03h) Y
Read Reverse Error Counter page (04h) N
Self-test Results page (10h) Y
Background Medium Scan page (15h) Y
Start-stop Cycle Counter page (0Eh) Y
Temperature page (0Dh) Y
Verify Error Counter page (05h) Y
Write error counter page (02h) Y
Mode Select (same pages as Mode Sense 1Ah) 15h Y [2]
Mode Select (10) (same pages as Mode Sense 1Ah) 55h Y
Mode Sense 1Ah Y [2]
Caching Parameters page (08h) Y
Control Mode page (0Ah) Y
Disconnect/Reconnect (02h) Y
Error Recover y page (01h) Y
Format page (03h) Y
Information Exceptions Control page (1Ch) Y
Background Medium Scan mode subpage (01h) Y
Notch and Partitio n Page (0C h) N
Protocol-Specific Port page (19h) Y
Power Condition page (1Ah) Y
Rigid Disc Drive Geometry page (04h) Y
Unit Attention page (00h) Y
Verify Error Recovery page (07h) Y
Xor Control page (10h) N
Mode Sense (10) (same pages as Mode Sense 1Ah) 5Ah Y
Prefetch 34h N
Read 08h Y
Read Buffer (modes 0, 2, 3, Ah and Bh supported) 3Ch Y
Read Capacity 25h Y
Read Defect Data (10) 37h Y
Read Defect Data (12) B7h Y
Read Extended 28h Y
DPO bit supported Y
FUA bit supported Y
Read Long 3Eh Y
Table 8: Commands supported by Cheetah T10 SAS family drives (continued)
Command name Command code Supported
Cheetah T10 SAS Product Manual, Rev. A 49
Reassign Blocks 07h Y
Receive Diagnostic Results 1Ch Y
Supported Diagnostics p ages (00h) Y
Translate page (40h) Y
Release 17h Y
Release (10) 57h Y
Request Sense 03h Y
Actual Retry Count bytes Y
Extended Sense Y
Field Pointer bytes Y
Reserve 16h Y
3rd Party Reserve Y
Extent Reservation N
Reserve (10) 56h Y
3rd Party Reserve Y
Extent Reservation N
Rezero Unit 01h Y
Search Data Equal 31h N
Search Data High 30h N
Search Data Low 32h N
Seek 0Bh Y
Seek Extended 2Bh Y
Send Diagnostics 1Dh Y
Supported Diagnostics p ages (00h) Y
Translate page (40h) Y
Set Limits 33h N
Start Unit/Stop Unit (spindle ceases rotating) 1Bh Y
Synchronize Cache 35h Y
Test Unit Ready 00h Y
Verify 2Fh Y
BYTCHK bit Y
Write 0Ah Y
Write and Verify 2Eh Y
DPO bit Y
Write Buffer (modes 0, 2, supported) 3Bh Y
Firmware Download option
(modes 5, 7, Ah and Bh supported) [3] Y
Write Extended 2Ah Y
DPO bit Y
Table 8: Commands supported by Cheetah T10 SAS family drives (continued)
Command name Command code Supported
50 Cheetah T10 SAS Product Manual, Rev. A
[1] Cheetah drives can format to 512, 520, 524, or 528 bytes per logical block.
[2] Warning. Power loss during flash programming can result in firmware corrup tion. This usually makes the
drive inoperable.
[3] Reference Mode Sense command 1Ah for mode pages supported.
[4] Y = Yes. Command is supported.
N = No. Command is not supported.
A = Support is available on special request.
FUA bit Y
Write Long 3Fh Y
Write S am e 41h Y
PBdata N
LBdata N
XDRead 52h N
XDWrite 50h N
XPWrite 51h N
Table 8: Commands supported by Cheetah T10 SAS family drives (continued)
Command name Command code Supported
Cheetah T10 SAS Product Manual, Rev. A 51
9.3.1 Inquir y da ta
Table 9 lists the Inquiry command data that the drive should return to the initiator per the format given in the
SAS Interface Manual.
Table 9: Cheetah T10 SAS inquiry data
* Copyright year (changes with actual year).
** SCSI Revision support. See the appropria te SPC release documention for definitions.
PP 10 = Inquiry data for an Inquiry command received on Port A.
30 = Inquiry data for an Inquiry command received on Port B.
R# Four ASCII digits representing the last four digits of the product firmware release number.
S# Eight ASCII digits representing the eight digits of the product serial number .
[ ] Bytes 16 through 26 reflect model of drive. The table above shows the hex values for Model ST3300555 SS.
Refer to the values below for the values of bytes 16 through 26 of your particular model:
ST3300555SS 53 54 33 33 30 30 35 35 35 53 53
ST3146755SS 53 54 33 31 34 36 37 35 35 53 53
ST373355SS 53 54 33 37 33 33 35 35 53 53 20
9.3.2 Mode Sense data
The Mode Sense command provides a way for the drive to report its operating parameters to the initiator. The
drive maintains four sets of mode parameters:
1. Default values
Default values are hard-coded in the drive firmware stored in flash E-PROM (nonvolatile memory) on the
drive’s PCB. These default values can be changed only by downloading a complete set of new firmware
into the flash E-PROM. An initiator can request and receive from the drive a list of default values and use
those in a Mode Select command to set up new current and saved values, where the values are change-
able.
2. Saved values
Saved values are stored on the drive’s media using a Mode Select command. Only parameter values that
are allowed to be changed can b e changed by this method. Parameters in th e saved values list that are not
changeable by the Mode Select command get their values from default values storage.
When power is applied to the drive, it takes saved values from the media and stores them as current val-
ues in volatile memory. It is not possible to change the current values (or the saved values) with a Mode
Bytes Data (hex)
0-15 00 00 xx** 12 8B 00 10 0A 53 45 41 47 41 54 45 20 Vendor ID
16-31 [53 54 33 33 30 30 35 35 35 53 53]120 20 20 20 20 Product ID
32-47 R# R# R# R# S# S# S# S# S# S# S# S# 00 00 00 00
48-63 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
64-79 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
80-95 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
96-111 00 43 6F 70 79 72 69 67 68 74 20 28 63 29 20 32* *Copyright
112-127 30* 30* 36* 20 53 65 61 67 61 74 65 20 41 6C 6C 20 notice
128-143 72 69 67 68 74 73 20 72 65 73 65 72 76 65 64 20
52 Cheetah T10 SAS Product Manual, Rev. A
Select command before the dr ive a chieves op er ating speed a nd is “r eady.” An attempt to do so result s in a
“Check Condition” status.
On drives requiring unique saved values, the required unique saved values are stored into the saved val-
ues storage location on the media prior to shipping the drive. Some drives may have unique firmware with
unique default values also.
On standard OEM drives, the saved values are taken from the default values list and stored into the saved
values storage location on the media prior to shipping.
3. Current values
Current values are volatile values being used by the drive to control it s operation. A Mode Select command
can be used to change the values identified as changeable values. Originally, current values are installed
from saved or default values after a power on reset, hard reset, or Bus Device Reset message.
4. Changeable values
Changeable values form a bit mask, stor ed in nonvolatile memo ry, that dictates which of the cu rrent valu es
and saved values can be changed by a Mode Select command. A one (1) indicates the value can be
changed. A zero (0) indicates the value is not changeable. For example, in Table 10, refer to Mode page
81, in the row entitled “CHG.” These are hex numbers representing the changeable values for Mode page
81. Note in columns 5 and 6 (bytes 04 and 05), there is 00h which indicates that in bytes 04 and 05 none of
the bits are changeable. Note also that bytes 06, 07, 09, 10, and 11 are not changeable, because those
fields are all zeros. In byte 02, hex value FF equates to the binary pattern 11111111. If there is a zero in any
bit position in the field, it means that bit is not changeable. Since all of the bits in byte 02 are ones, all of
these bits are changea ble .
The changeable values list can only be changed by downloading new firmware into the flash E-PROM.
Note. Because there are of ten se veral dif fe rent versions of drive control fir mware in the tota l population of
drives in the field, the Mode Sense values given in the following t ables m ay not exactly match those
of some drives.
The following t ables list the values of th e dat a bytes returne d by the drive in response to the Mo de Sense com-
mand pages for SCSI implementation (see the SAS Interface Manual ).
Definitions:
DEF = Default value. Standard OEM drives are shipped configured this way.
CHG = Changeable bits; indicates if default value is changeable.
Cheetah T10 SAS Product Manual, Rev. A 53
Table 10: ST3300555SS Mode Sense data
MODE DATA HEADER:
03 fa 00 10 00 00 00 08
BLOCK DESCRIPTOR:
22 ec b2 5c 00 00 02 00
MODE PAGES:
DEF 81 0a c0 0b ff 00 00 00 05 00 ff ff
CHG 81 0a ff ff 00 00 00 00 ff 00 ff ff
DEF 82 0e 00 00 00 00 00 00 00 00 01 3a 00 00 00 00
CHG 82 0e 00 00 00 00 00 00 00 00 ff ff 00 00 00 00
DEF 83 16 68 58 00 00 00 38 00 00 03 db 02 00 00 01 00 e6 03 02 40 00 00 00
CHG 83 16 00 00 00 00 ff ff 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DEF 84 16 01 22 64 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3a a7 00 00
CHG 84 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DEF 87 0a 00 0b ff 00 00 00 00 00 ff ff
CHG 87 0a 0f ff 00 00 00 00 00 00 ff ff
DEF 88 12 14 00 ff ff 00 00 ff ff ff ff 80 20 00 00 00 00 00 00
CHG 88 12 a5 00 00 00 ff ff ff ff 00 00 20 00 00 00 00 00 00 00
DEF 8a 0a 02 00 00 00 00 00 00 00 0f 0c
CHG 8a 0a 03 f0 00 00 00 00 00 00 00 00
DEF 18 06 06 00 00 00 00 00
CHG 18 06 00 00 00 00 00 00
DEF 99 06 06 00 07 d0 00 00
CHG 99 06 10 00 ff ff ff ff
DEF 9a 0a 00 02 00 00 00 05 00 00 00 04
CHG 9a 0a 00 03 ff ff ff ff 00 00 00 00
DEF 9c 0a 10 00 00 00 00 00 00 00 00 01
CHG 9c 0a 9d 0f ff ff ff ff ff ff ff ff
DEF dc 01 00 0c 01 01 00 18 00 18 00 00 00 00 00 00
CHG dc 01 00 0c 01 01 ff ff ff ff 00 00 00 00 00 00
DEF b9 0a 00 00 00 00 00 00 00 00 00 00
CHG b9 0a 00 08 00 00 00 00 00 00 00 00
DEF ba 0a 00 05 01 19 01 00 00 0a 00 00
CHG ba 0a 00 ff 03 ff ff ff 06 ff 00 00
DEF 80 06 00 80 0f 00 00 00
CHG 80 06 b7 c0 0f 00 00 00
54 Cheetah T10 SAS Product Manual, Rev. A
Table 11: ST3146755SS Mode Sense data
MODE DATA HEADER:
03 fa 00 10 00 00 00 08
BLOCK DESCRIPTOR:
11 17 73 30 00 00 02 00
MODE PAGES:
DEF 81 0a c0 0b ff 00 00 00 05 00 ff ff
CHG 81 0a ff ff 00 00 00 00 ff 00 ff ff
DEF 82 0e 00 00 00 00 00 00 00 00 01 3a 00 00 00 00
CHG 82 0e 00 00 00 00 00 00 00 00 ff ff 00 00 00 00
DEF 83 16 34 2c 00 00 00 1c 00 00 03 db 02 00 00 01 00 e6 03 02 40 00 00 00
CHG 83 16 00 00 00 00 ff ff 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DEF 84 16 01 22 64 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3a a7 00 00
CHG 84 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DEF 87 0a 00 0b ff 00 00 00 00 00 ff ff
CHG 87 0a 0f ff 00 00 00 00 00 00 ff ff
DEF 88 12 14 00 ff ff 00 00 ff ff ff ff 80 20 00 00 00 00 00 00
CHG 88 12 a5 00 00 00 ff ff ff ff 00 00 20 00 00 00 00 00 00 00
DEF 8a 0a 02 00 00 00 00 00 00 00 07 95
CHG 8a 0a 03 f0 00 00 00 00 00 00 00 00
DEF 18 06 06 00 00 00 00 00
CHG 18 06 00 00 00 00 00 00
DEF 99 06 06 00 07 d0 00 00
CHG 99 06 10 00 ff ff ff ff
DEF 9a 0a 00 02 00 00 00 05 00 00 00 04
CHG 9a 0a 00 03 ff ff ff ff 00 00 00 00
DEF 9c 0a 10 00 00 00 00 00 00 00 00 01
CHG 9c 0a 9d 0f ff ff ff ff ff ff ff ff
DEF dc 01 00 0c 01 01 00 18 00 18 00 00 00 00 00 00
CHG dc 01 00 0c 01 01 ff ff ff ff 00 00 00 00 00 00
DEF b9 0a 00 00 00 00 00 00 00 00 00 00
CHG b9 0a 00 08 00 00 00 00 00 00 00 00
DEF ba 0a 00 05 01 19 01 00 00 0a 00 00
CHG ba 0a 00 ff 03 ff ff ff 06 ff 00 00
DEF 80 06 00 80 0f 00 00 00
CHG 80 06 b7 c0 0f 00 00 00
Cheetah T10 SAS Product Manual, Rev. A 55
Table 12: ST373355SS Mode Sens e data
MODE DATA HEADER:
03 fa 00 10 00 00 00 08
BLOCK DESCRIPTOR:
08 8b b9 98 00 00 02 00
MODE PAGES:
DEF 81 0a c0 0b ff 00 00 00 05 00 ff ff
CHG 81 0a ff ff 00 00 00 00 ff 00 ff ff
DEF 82 0e 00 00 00 00 00 00 00 00 01 3a 00 00 00 00
CHG 82 0e 00 00 00 00 00 00 00 00 ff ff 00 00 00 00
DEF 83 16 1a 16 00 00 00 0e 00 00 03 db 02 00 00 01 00 e6 03 02 40 00 00 00
CHG 83 16 00 00 00 00 ff ff 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DEF 84 16 01 22 64 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3a a7 00 00
CHG 84 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DEF 87 0a 00 0b ff 00 00 00 00 00 ff ff
CHG 87 0a 0f ff 00 00 00 00 00 00 ff ff
DEF 88 12 14 00 ff ff 00 00 ff ff ff ff 80 20 00 00 00 00 00 00
CHG 88 12 a5 00 00 00 ff ff ff ff 00 00 20 00 00 00 00 00 00 00
DEF 8a 0a 02 00 00 00 00 00 00 00 03 ed
CHG 8a 0a 03 f0 00 00 00 00 00 00 00 00
DEF 18 06 06 00 00 00 00 00
CHG 18 06 00 00 00 00 00 00
DEF 99 06 06 00 07 d0 00 00
CHG 99 06 10 00 ff ff ff ff
DEF 9a 0a 00 02 00 00 00 05 00 00 00 04
CHG 9a 0a 00 03 ff ff ff ff 00 00 00 00
DEF 9c 0a 10 00 00 00 00 00 00 00 00 01
CHG 9c 0a 9d 0f ff ff ff ff ff ff ff ff
DEF b9 0a 00 00 00 00 00 00 00 00 00 00
CHG b9 0a 00 08 00 00 00 00 00 00 00 00
DEF ba 0a 00 05 01 19 01 00 00 0a 00 00
CHG ba 0a 00 ff 03 ff ff ff 06 ff 00 00
DEF 80 06 00 80 0f 00 00 00
CHG 80 06 b7 c0 0f 00 00 00
56 Cheetah T10 SAS Product Manual, Rev. A
9.4 Miscellaneous operating features and conditions
Table 13 lists various features and conditions. A “Y” in the support column indicates the feature or condition is
supported. An “N” in the support column indicates the feature or condition is not supported.
Table 13: Miscellaneous features
Supported Feature or condition
NAutomatic contingent allegiance
NAsynchronous event notification
NSynchronized (locked) spindle operation
YSegmented caching
NZero latency read
YQueue tagging (up to 64 queue tags supported)
YDeferred error handling
YParameter rounding (controlled by Round bit in Mode Select page 0)
YReporting actual retry count in Extended Sense bytes 15, 16, and 17
NAdaptive caching
YSMP = 1 in Mode Select command needed to save RPL and rotational offset bytes
Table 14: Miscellaneous status
Supported Status
YGood
YCheck condition
YCondition met/good
YBusy
YIntermediate/good
YIntermediate/condition met/good
YReservation conflict
YTask set full
NACA active
NACA active, faulted initiator
Cheetah T10 SAS Product Manual, Rev. A 57
9.4.1 SAS physical interface
Figure 16 shows the location of the SAS device connector J1. Figures 17 and 18 provide th e dimen sions of the
SAS device.
Details of the physical, electrical, and logical characteristics are provided within this section. The operational
aspects of Seagate’s SAS drives are provided in the SAS Interface Manual..
Figure 16. Physical interface
J6
SAS Interface
connector
58 Cheetah T10 SAS Product Manual, Rev. A
Figure 17. SAS connector dimensions
C OF DATUM B
L
5.08
1.27 (6X)
1.27 (14X)
15.875
0.35MIN
15.875
33.43 0.05 B
4.90 0.08
0.84 0.05 (22X)
0.15 B
P15 P1
S7
S1
SEE Detail1
0.30 0.05 (4X)
4.00 0.08
0.15 D
0.30 0.05 (2X)
41.13 0.15
B
BC
CA
A
0.20 B
42.73 REF.
C OF DATUM D
L
1.10
R0.30 0.08 (4X)
2.00 (3X)
5.08
0.45 0.03 (7X)
0.10 M E
4.65
0.80 (6X)
7.625.92
0.52 0.08 x 45
Cheetah T10 SAS Product Manual, Rev. A 59
Figure 18. SAS connector dimensions
9.4.2 Physical characteristics
This section defines physical interface connector.
9.4.3 Connector requirements
Contact your preferred connector manufacturer for mating part information. Part numbers for SAS connectors
will be provided in a future revision of this publication when production parts are available from major connec-
tor manufacturers.
The SAS device connector is illustrated in Figures 17 and 18.
6.10
Detail A
0.30 0.05 x 45 (5X)
0.40 0.05 X 45 (3X)
CORING ALLOWED
IN THIS AREA.
2.25 0.05
4.85 0.05
0.10 B
E
S14 S8
4.40 0.15
SEE Detail 2
3.90 0.15
SECTION A - A
SECTION C - C
A
0.35 0.05
45
R0.30 0.08 C
1.95 0.08
0.08 0.05
1.23 0.05
0.08 0.05
Detail 2
CONTACT SURFACE FLUSH
TO DATUM A 0.03
65
30
1.90 0.08
SECTION B - B
2.40 0.08
0.10 A
D
60 Cheetah T10 SAS Product Manual, Rev. A
9.4.4 Electrical description
SAS drives use the device connector for:
• DC power
• SAS interface
• Activity LED
This connector is des ign ed to eit he r plu g directly into a backpanel or accept cables.
9.4.5 Pin descriptions
This section provides a pin-out of the SAS device and a desc rip tion of th e fun ct ion s pr ovid e d by the pin s.
Table 15: SAS pin descriptions
* - Short pin to support hot plugging
NC - No connection in the drive.
Pin Signal name Signal ty pe Pin Signal name Signal type
S1 Port A Ground P1* NC (reserved 3.3Volts)
S2* +Port A_in Diff. inp ut pair P2* NC (reserved 3.3Volts)
S3* -Port A_in P3 NC (reserved 3.3Volts)
S4 Port A Ground P4 Ground
S5* -Port A_out Diff output pair P5 Ground
S6* +Port A_out P6 Ground
S7 Port A Ground P7 5 Volts charge
S8 Port B Ground P8* 5 Volts
S9* +Port B_in Diff. inp ut pair P9* 5 Volts
S10* -Port B_in P10 Ground
S11 Port A Ground P11* Ready LED Open coll ector out
S12* -Port B_out Diff output pair P12 Ground
S13* +Port B_out P13 12 Volts charge
S14 Port B Ground P14* 12 Volts
P15* 12 Volts
Cheetah T10 SAS Product Manual, Rev. A 61
9.4.6 SAS transmitters an d rece iv ers
A typical SAS differential copper transmitter and receiver pair is shown in Figure 19. The receiver is AC cou-
pling to eliminate ground shift noise.
Figure 19. SAS transmitters and receivers
9.4.7 Power
The drive receives power (+5 volts and +12 volts) through the SAS device connector.
Three +12 volt pins provide power to the drive, 2 short and 1 long. The current return for the +12 volt power
supply is through the common ground pins. The supply current and return current must be distributed as
evenly as possible amo n g the pi n s.
Three +5 volt pins pr ov ide pow er to the d rive, 2 sh ort and 1 long. The current return for the +5 volt power sup-
ply is through th e common gr ound p ins. The supp ly current and retu rn curr ent must be distributed as evenly as
possible amon g th e pin s.
Current to th e drive through the lo ng power pins ma y be limited by the system to reduce inrush current to the
drive during hot plugging.
9.5 Signal characteristics
This section describes the electrical signal characteristics of the drive’s input and output signals. See Table 15
for signal type and signal name information.
9.5.1 Ready LED Out
The Ready LED Out signal is driven by the drive as indicated in Table 16.
Table 16: Ready LED Out conditions
Normal command activity LED status
Ready LED Meaning bit mode page 19h 0 1
Spun down and no activity Off Off
Spun down and acti vity (command executing) On On
Spun up and no activity On Off
Spun up and activity (command executing) Off On
Spinning up or do w n Blinks steadily
(50% on and 50% off, 0.5 seconds on and off for 0.5 seconds)
Format in progress, each cylinder change Toggles on/off
TY .01
Differential
Transfer Medium
.01
Transmitter
TX
RY
Receiver
RX
100 100
62 Cheetah T10 SAS Product Manual, Rev. A
The Ready LED Out signal is designed to pull down the cathode of an LED. The anode is attached to the
proper +3. 3 volt su pply thro ugh an ap prop riat e cur ren t limitin g resist or. T he L ED an d th e cu rrent lim iting resis-
tor are external to the drive. See Table 17 for the output characteristics of the LED drive signals.
9.5.2 Differential signals
The drive SAS differential sig nals comply with the intra-enclosure (internal connector) requirements of the SAS
standard.
Table 18 defines the general interface characteristics.
9.5.2.1 Eye masks
9.5.2.1.1 Eye masks overview
The eye masks are graphical representations of the voltage and time limits on the signal at the compliance
point. The time values between X1 and (1 - X1) cover all but 10-12 of the jitter population. The random content
of the total jitter population has a range of ± 7 standard deviations.
Table 17: LED drive signal
State Test condition Output voltage
LED off, high 0 V ≤ VOH ≤ 3.6 V -100 µA < IOH < 100 µA
LED on, low IOL = 15 mA 0 ≤ VOL ≤ 0.225 V
Table 18: General interface characteristics
Characteristic Unit s 1 . 5 Gbps 3.0 Gbps
Bit rate (nominal) Mbaud 1,500 3,000
Unit interval (UI)(nominal) ps 666.6 333.3
Impedance (nominal, differential ) ohm 100 100
Transmitter transients, maximum V ± 1.2 ± 1.2
Receiver transients, maximum V ± 1.2 ± 1. 2
Cheetah T10 SAS Product Manual, Rev. A 63
9.5.2.1.2 Receive eye mask
Figure 20 describes the receive eye mask. This eye mask applies to jitter after the application of a single pole
high-pa ss frequency-weighting function that progressively attenuates jitter at 20 dB/decade below a frequency
of ((bit rate) / 1.667).
Figure 20. Receive eye mask
Verifying compliance with the limits represented by the receive eye mask should be done with reverse cha nnel
traffic present in order that the effects of crosstalk are taken into account.
9.5.2.1.3 Jitter tolerance masks
Figure 21 describes the receive tolerance eye masks and is constructed using the X2 and Z2 values given in
table 21. X1OP is half the value for total jitter intable 21 and X1TOL is half the value for total jitter in table 22, for
jitter frequencies above ((bit rate ) / 1.667).
Figure 21. Reveive tole r an ce eye mask
Absolute
amplitude
(in V)
Z1
Z2
0 V
-Z1
-Z2
X1 X2
1-X2 1-X1
Normalized time (in UI)
01
Absolute
amplitude
(i n V)
Z1TOL
0 V
-Z1OP
X1OP X2
1-X1TOL
1-X1OP
Normalized time (in UI)
(additional sinusoidal j itter) / 2
-Z1
TOL
Z1OP
X1TOL
Outli ne of eye mask
after adding
sinuso idal jit ter
Outli ne of eye mask
before adding
si nusoidal ji tter
01
Z2
-Z2
64 Cheetah T10 SAS Product Manual, Rev. A
The leading and trailing edge slopes of figure 20 shall be preserved. As a result the amplitude value of Z1 is
less than that given in table 20 and Z1TOL and Z1OP shall be defined from those slopes by the following equa-
tion:
where:
Z1TOL is the value for Z1 to be used for the tolerance masks; and
Z1OP, X1OP, and X2OP are the values in table 20 for Z1, X1, and X2.
The X1 points in the receive tolerance masks are greater than the X1 points in the receive masks, due to the
addition of sinusoidal jitter.
Figure 22 defines the sinusoidal jitter mask.
Figure 22. Sinusoidal jitter mask
Z1TOL Z1OPxX2OP 05,()xadditional sinusoidal jitter()–X1OP
–
X2OP X1OP
–
-----------------------------------------------------------------------------------------------------------------------------------=
FNOM / 25,00 0 FNOM / 1,667
Sinusoida l jitter frequency
(log/l og pl ot)
Peak-to-
peak
sinusoidal
jitter
(i n UI) FNOM
= 1.5 x 10 9 for 1.5 Gbps
FNOM
= 3.0 x 10 9 for 3.0 Gbps
1.5
0
0.1
Frequenc y (in kHz)
1.0
Cheetah T10 SAS Product Manual, Rev. A 65
9.5.2.2 Transmitter signal characteristics
Table 19 specifies the signal requirements at the transmitter end of a TxRx connection as measured into the
zero-length test load. All specifications are based on differential measurements.
The OOB sequence is performed at signal voltage levels corresponding to the lowest supported transfer rate.
Table 19 specifies the signal characteristics.
Table 19: Transmitter signal characteristics
Signal characteristicaUnits 1.5 Gbps 3.0 Gbps
Skewbps 20 15
Tx Off VoltagecmV(P-P) < 50 < 50
Maximum rise/fal l timedps 27 3 137
Minimum rise/fall timedps 67 67
Maximum transmitter output imbalancee%10 10
OOB offset de ltafmV ± 25 ± 25
OOB common mode deltagmV ± 50 ± 50
a All tests in this table shall be performed with zero-length test load shown in figure 24.
b The skew measurement shall be made at the midpoint of the transition with a repeating 0101b pattern on the physical
link. The same stable trigger, coherent to the data stream, shall be used for both the Tx+ and Tx- signals. Skew is
defined as the time difference between the means of the midpoint crossing times of the Tx+ signal and the Tx- signal.
c The transmitter off voltage is the maximum A.C. voltage measured at compliance points when the transmi tter is
unpowered or transmitting D.C. idle (e.g., during idle time of an OOB signal).
d Rise/fall times are measured from 20 % to 80 % of the transition with a repeating 0101b pattern on the physical link.
e The maximum difference between the V+ and V- A.C. RMS transmitter amplitudes measured on a CJTPAT test
pattern (see 9.5.2.3.3) into the test load shown in figure 24, as a percentage of the average of the V+ and V- A.C.
RMS amplitudes.
f The maximum difference in the average differential voltage (D.C. offset) component between the burst times and the
idle times of an OOB signal.
g The maximum difference in the average of the common mode voltage between the burst times and the idle times of
an OOB signal.
66 Cheetah T10 SAS Product Manual, Rev. A
9.5.2.3 Receiver si gn a l ch ara ct eri st ic s
Table 20 defines the complia nce point requirem ents of the signal at the receiver end of a TxRx connection as
measured into the test loads specified in figure 23 and figure 24.
9.5.2.3.1 Jitter
Table 21 defines the maximum allowable jitter .
Table 20: Receiver signal characteristics
Signal characteristic Units 1.5 Gbps 3.0 Gbps
Jitter (see figure 20)bN/A See table 21 See table 21
2 x Z2 mV(P-P) 1,200 1,600
2 x Z1 mV(P-P) 325 275
X1aUI 0.275 0.275
X2 UI 0.50 0.50
Skewdps 80 75
Max voltage (non-op) mV(P-P) 2.000 2.000
Minimum OOB ALIGN burst amplitudecmV(P-P) 240 240
Maximum noise during OOB idle timecmV(P-P) 120 120
Max near-end crosstalkemV(P-P) 100 100
aThe value for X1 shall be half the value given for total jitter in table 21. The test or analysis shall include the effects of
a single pole high-pass frequency-weighting function that progressively attenuates jitter at 20 dB/decade below a
frequency of ((bit rate) / 1,667).
bThe value for X1 applies at a total jitter probability of 10-12. At this level of probability direct visual comparison
between the mask and actu al signals is not a valid method for determining compliance with the jitter output
requirements.
cWith a measurement bandwidth of 1.5 times the baud rate (i.e. 4.5 GHz for 3.0 Gbps).
d The skew measurement shall be made at the midpoint of the transition with a repeating 0101b pattern on the physical
link. The same stable trigger, coherent to the data stream, shall be used for both the Rx+ and Rx- signals. Ske w is
defined as the time difference between the means of the midpoint crossing times of the Rx+ signal and the Rx- signal.
e Near-end crosstalk is the unwanted signal amplitude at receiver terminals DR, CR, and XR coupled from signals and
noise sources other than the desired signal. Refer to SFF-8410.
Table 21: Maximum allowable jitter
1.5 Gbps m, n3.0 Gbps m, n
Deterministic jitterqTotal jitterc,d,e,fDeterministic jittereTotal jitterc,d,e,f
0.35 0.55 0.35 0.55
a Units are in UI.
b The values for jitter in this section are me asu r e d at the ave rage amplitude point.
c Total jitter is the sum of deterministic jitter and random jitter. If the actual deterministic jitter is less than the maximum
specified, then the random jitter may increase as long as the total jitter does not exceed the specified maximum total
jitter.
d Total jitter is specified at a probability of 10-12.
e The deterministic and total values in this table apply to jitter after application of a single pole high-pass frequency-
weighting function that progressively attenuates jitter at 20 dB/decade below a frequency of ((bit rate) / 1 667).
f If tot al jit ter receiv ed at any po int is less than the maximum allowed, then the jitter distribution of the signals is allowed
to be asymmetric. The total jitter plus the magnitude of the asymmetry shall not exceed the allowed maximum total
jitter. The numerical difference between the average of the peaks with a BER < 10-12 and the average of the
individual events is the measure of the asymmetry. Jitter peak-to-p eak measured < (maximum total jitter -
|Asymmetry|).
Cheetah T10 SAS Product Manual, Rev. A 67
9.5.2.3.2 Receiver jitte r tole ra nc e
Table 22 defines the amount of jitter the receiver shall tolerate .
9.5.2.3.3 Compliant jitter test pattern (CJTPAT)
The CJTPAT within a compliant protocol frame is used for all jitter testing unless otherwise specified. See the
SAS Interface Manual for definition of the required pattern on the physical link and information regarding spe-
cial considerations for scrambling and running disparity.
9.5.2.3.4 Impedance specifications
Table 23 defines impedance requirements.
Table 22: Receiver jitter tolerance
1.5 Gbpsa3.0 Gbpsa
Sinusoidal
jitterb,c Deterministic
jittere,f,h Total
jitterhSinusoidal
jitterb,d Deterministic
jittere,g,h Total
jitterh
0.10 0.35 0.65 0.10 0.35 0.65
a Units are in UI.
bThe jitter values given are normative for a combination of deterministic jitter, random jitter , and sinusoidal jitter that
receivers shall be able to tolerate with out exceeding a BER of 10-12. Receivers shall tolerate sinusoi dal jitter of
progressively greater amplitu de at lower frequencies, according to the mask in figure 22 with the same deterministic
jitter and random jitter levels as were used in the high frequency sweep.
c Sinusoidal swept frequency: 900 kHz to > 5 MHz.
d Sinusoidal swept frequency: 1.800 kHz to > 5 MHz.
eNo value is given for random jitter. For compliance with this standard, the actual random jitter amplitude shall be the
value that brings total jitter to the stated value at a probability of 10-12. The additional 0.1 UI of sinusoidal jitter is
added to ensure the receiver has sufficient operating margin in the presence of external interference.
f Deterministic jitter: 900 kHz to 750 MHz.
g Deterministic jitter: 1.800 kHz to 1.500 MHz.
hThe deterministic and total values in this table apply to jitter after application of a single pole high-pass frequency-
weighting function that progressively attenuates jitter at 20 dB/decade below a frequency of ((bit rate) / 1.667).
Table 23: Impedance requirements (Sheet 1 of 2)
Requirement Units 1.5 Gbps 3.0 Gbps
Time domain reflectometer rise time 20 % to 80 %a,b ps 100 50
Media (PCB or cable)
Differential impedanceb,c,d ohm 100 ± 10 100 ± 10
Differential impedance imbalanceb,c,d,g ohm 5 5
Common mode impedanceb,c,d ohm 32.5 ± 7.5 32.5 ± 7.5
Mated connectors
Differential impedanceb,c,d ohm 100 ± 15 100 ± 15
Differential impedance imbalanceb,c,d,g ohm 5 5
Common mode impedanceb,c,d ohm 32.5 ± 7.5 32.5 ± 7.5
Receiver termination
Differential impedanceb,e,f ohm 100 ± 15 100 ± 15
Differential impedance imbalanceb,e,f,g ohm 5 5
Receiver termination time constantb,e,f ps 150 max 100 max
68 Cheetah T10 SAS Product Manual, Rev. A
9.5.2.4 Electrical TxRx connections
TxRx connections may be divided into TxRx connection segments. In a single TxRx connection individual
TxRx connection segments may be formed from differing media and materials, including traces on printed wir-
ing boards and optical fibers. This subclause applies only to TxRx connection segments that are formed from
electrically conductive media.
Each electrical TxRx connection segment shall comply with the impedance requirements of table 23 for the
media from which they are formed. An equalizer network, if present, shall be part of the TxRx connection.
TxRx connections that are composed en tirely of el ectrically conducting med ia shall be ap plied only to homo ge-
nous ground application s (e.g., betw een devices w ithin an enclosure or rack, or between enclosures intercon-
nected by a common ground return or ground plane).
9.5.2.4.1 Transmitter characteristics
The drive is D.C. coupled.
Common mode impedanceb,e ohm 20 min/40 max 20 min/40 max
Transmitter source termination
Differential impedancebohm 60 min/115 max 60 min/115 max
Differential impedance imbalanceb,g ohm 5 5
Common mode impedancebohm 15 min/40 max 15 min/40 max
a All times indicated for time domain reflectometer measurements are record ed times. Recorded times are twice the
transit time of the time domain reflectometer signal.
b All measurements are made through mated connector pairs.
cThe media impedance measurement identifies the impedance mismatches present in the media when terminated in
its characteristic impedance. This measurement exclu des mated connectors at both ends of the media, when
present, but includes any intermediate connectors or splices. The mated connectors measurement applies only to the
mated connector pair at each end, as applicable.
dWhere the media has an electrical len gth of > 4 ns the procedure detailed in SFF-8410, or an equivalent procedure,
shall be used to determine the impedance.
eThe receiver termination impedance specification applies to all receivers in a TxRx connection and covers all time
points between the connector nearest the receiver, the receiver, and the tra nsmission line terminator. This
measurement shall be made from that connector.
fAt the time point corresponding to the connection of the receiver to the transmission line the input capacitance of the
receiver and its connection to the transmission line may cause the measured impedance to fall below the minimum
impedances specified in this table. The area of the impedance dip (amplitude as ρ, the reflection coefficient, and
duration in time) caused by this capacitance is the receiver termination time constant. The receiver time constant
shall not be greater than the values shown in this table. An approximate value for the receiver termination time
constant is given by the product of the amplitude of the dip (as ρ) and its width (in p s) measured at the half amplitude
point. The amplitude is defined as being the difference in the reflection coefficient between the reflection coefficient at
the nominal impedance and the reflection coefficient at the minimum impedance point. The value of the receiver
excess input capacitance is given by the following equation:
where (R0 || RR) is the parallel combination of the transmission line characteristic impedance and
termination resistance at the receiver.
g The difference in measured impedance to ground on the plus and minus terminals on the interconnect, transmitter or
receiver, with a differential test signal applied to those terminals.
Table 23: Impedance requirements (Sheet 2 of 2)
Requirement Units 1.5 Gbps 3.0 Gbps
Creceiver termination time constant
R0RR|()
------------------------------------------------------------------------------------------=
Cheetah T10 SAS Product Manual, Rev. A 69
A combination of a zero-length test load and the transmitter compliance transfer function (TCTF) test load
methodology is used for the specification of transmitter characteristics. This methodology specifies the trans-
mitter signal at the test points on the required test loads. The transmitter uses the same settings (e.g., pre-
emphasis, voltage swing) with both the zero-length test load and the TCTF test load. The signal specifications
at IR are met under each of these loading conditions.
The TCTF is the mathematical st atement of the tr ansfer functio n through which the transmitter shall be cap able
of producing acceptable signals as defined by a receive mask. The transmission magnitude response of the
TCTF in dB is given by the following equation for 1.5 Gbps:
for 50 MHz < f < 1.5 GHz, and:
for 1.5 GHz < f < 5.0 GHz,
where:
a) f is the signal frequency in hertz.
The transmission magnitude response of the TCTF in dB is given by the following equation for 3.0 Gbps:
for 50 MHz < f < 3.0 GHz, and:
for 3.0 GHz < f < 5.0 GHz,
where f is the signal frequency in hertz.
The TCTF is used to specify the requirem ents on tr ansmitters that may or may not inco rporate pre-emp hasis or
other forms of compensation. A compliance interconnect is any physical interconnect with loss equal to or
greater than that of the TCTF at the above frequencies that also meets the ISI loss requirements shown in fig-
ure 25 and figure 26.
Compliance with the TCTF test load requirement is verified by measuring the signal produced by the transmit-
ter through a physical compliance interconnect attached to the transmitter.
Compliance with the zero-length test load requirement verified by measurement made across a load equiva-
lent to the zero-length load shown in figure 24.
For both test load cases, the transmitter delivers the output voltages and timing listed in table 20 at the desig-
nated compliance point s. The default mask is IR for intra-cabi net TxRx conn ections. The eye masks ar e shown
in 9.5.2.1.
Figure 23 shows the compliance interconne ct test load.
Figure 23. Compliance interconnect test load
S21 20–log
10 e() 65,10 6– f05,
××()20,10 10– f××()33,10 20–f2
××()++()× dB×=
S21 5 437,–dB=
S21 20–log
10 e() 65,10
6
–f
0
5,
××()20,10
10
–f××()33,10
20
–f
2
××()++()× dB×=
S21 10 884,–dB=
Tx+
Tx-
10 nF 50 ohm
50 ohm
Probe
points
SAS internal connector
TCTF
10 nF
70 Cheetah T10 SAS Product Manual, Rev. A
Figure 24 shows the zero-length test load .
Figure 24. Zero-length test load
Figure 25 shows an ISI loss example at 3.0 Gbps.
Figure 25. ISI loss example at 3.0 Gbps
Figure 26 shows an ISI loss example at 1.5 Gbps.
Figure 26. ISI loss example at 1.5 Gbps
Tx+
Tx-
10 nF 50 ohm
50 ohm
Probe
points
SAS internal connector
10 nF
ISI loss
> 3.9 dB
-
10.9 dB
F requency (G Hz)
Sample compliance interconnect
0
3.01.5
0.3
S21 (dB)
Compliance interconnect magnitude response and
IS I loss example for 3.0 G bps
ISI loss
> 2.0 dB
F requency (G Hz)
Sample compliance interconnect
0
1.50.75
0.15
S21 (dB)
Compliance interconnect magnitude response and IS I
loss example for 1.5 G bps
-5.4 d B
Cheetah T10 SAS Product Manual, Rev. A 71
9.5.2.5 Receiver characteristics
The drive receiver is A.C. coupled. The receive networ k ter minate s th e TxRx conne ction by a 1 00 ohm eq uiva -
lent impedance as specified in table 23.
The receiver operates within a BER of 10-12 when a SAS signal with valid voltage and timing characteristics is
delivered to the compliance point from a 100 ohm source. The received SAS signal are considered valid if it
meets th e voltage and timing limits specified in table 20.
Additionally the receiver operates within the BER objective when the signal at a receiving phy has the addi-
tional sinusoidal jitter present that is specified in table 22 and the common mode signal VCM over frequency
range FCM as specified in table 18. The jitter tolerance is shown in Figure 22 for all Rx compliance points in a
TxRx connection. The figure given assumes that any exte rnal interference oc curs prior to the point at wh ich the
test is applied. When testing the jitter tolerance capability of a receiver, the additional 0.1 UI of sinusoidal jitter
may be reduced by an amount proportional to the actual externally induced interference between the applica-
tion point of the test and the input to the receiving phy. The additional jitter reduces the eye opening in both
voltage and time.
72 Cheetah T10 SAS Product Manual, Rev. A
Cheetah T10 SAS Product Manual, Rev. A 73
10.0 Seagate Technology support services
Online services
Internet
www.seagate.com for information about Seagate products and services. Worldwide support is available 24
hours daily by e-mail for you r qu es tio ns.
Presales Support: www.seagate.com/support/email/email_presales.html or Presales@Seagate.com
Technical Support: www.seagate.com/support/email/email_disc_support.html or DiscSupport@Seagate.com
mySeagate
my.seagate.com is the industry’s first Web portal designed specifically for OEMs and distributors. It provides
self-service access to critical applications, pe rsonalized content and the tools that allow our partners to ma n-
age their Seagate account functions. Submit pricing requests, orders and returns through a single, pa ssword-
protected Web interface—anytime, anywhere in the world.
spp.seagate.com
spp.seagate.com supports Seagate resellers with product information, program benefits and sales tools. You
may register for customi zed communica tions that are not available o n the web. T hese commu nications cont ain
product launch, EOL, pricing, promotions and other channel-related information. To learn more about the ben-
efits or to register, go to spp.seagate.com, an y tim e, from an ywh er e in th e wor ld .
Seagate Service Centers
Presales Support
Our Presales Support staff can help you determine which Seagate products are best suited for your specific
application or computer system, as well as product availability and compatibility.
Technical Support
Seagate technical support is available to assist you online at support.seagate.com or through one of our call
centers. Have your system configuration information and your “ST” model number available.
SeaTDD™ (+1-405-324-3655) is a telecommunications device for the deaf (TDD). You can send questions or
comments 24 hours daily and exchange messages with a technical support specialist during normal business
hours for the call center in your region.
Customer Service Operations
Warranty Service
Seagate offers worldwide customer support for Seagate drives. Seagate distributors, OEMs and other direct
customers should contact their Seagate Customer Service Operations (CSO) representative for warranty-
related issues. Resellers or end users of drive products should contact their place of purchase or one of the
Seagate CSO warranty centers for assistance. Have your drive’s “ST” model number and serial number avail-
able.
74 Cheetah T10 SAS Product Manual, Rev. A
Data Recovery Services
Seagate offers data recovery services for all formats and all brands of storage media. Our Data Recovery Ser-
vices labs are currently located in North America. To speak with a case management representative, call
1-800-475-0143. Additional information, including an online request form and data loss prevention resour ces,
is available at www.datarecovery.seagate.com.
Authorized Service Centers
In some locations outside the US, you can contact an Authorized Service Center for service.
USA/Canada/Latin America support services
Seagate Service Centers
Presales Support
Call center Toll-free Direct dial FAX
Americas 1-877-271-32851+1-405-324-47301+1-405-324-4704
Technical Support
Call center Toll-free Direct dial FAX
Americas 1-800-SEAGATE2+1-405-324-47002+1-405-324-3339
Customer Service Operations
Warranty Service
Call center Toll-free Direct dial FAX / E-mail
USA, Canada, Mexico and 1-800-468-34723— +1-956-664-4725
Latin America
Brazil
Jabil Industrial Do Brasil — +55-11-4191-4761 +55-11-4191-5084
LTDA4 SeagateRMA.br@jabil.com
Data Recovery Services
Call center Toll-free Direct dial FAX
USA, Canada, 1-800-475-01435 +1-905-474-2162 1-800-475-0158
and Mexico +1-905-474-2459
1Hours of operation are 8:00 A.M. to 7:00 P.M., Monday through Friday (Central time).
2Hours of operation are 8:00 A.M. to 8:00 P.M., Monday through Friday (Central time).
3Hours of operation are 8:00 A.M. to 5:00 P.M., Monday through Friday (Central time).
4Authorized Service Center
5Hours of operation are 8:00 A.M. to 8:00 P.M., Monday through Friday, and 9:00 A.M. to 5:00 P.M., Saturday (Eastern time).
Cheetah T10 SAS Product Manual, Rev. A 75
European support services
For presales and technical support in Europe, dial the Seagate Service Center toll-free number for your spe-
cific location. If your location is not listed here, dial our presales and technical support call center at +1-405-
324-4714 from 8:00 A.M. to 11:45 A.M. and 1:00 P.M. to 5:00 P.M. (Central Europe tim e) Mon day throu gh Frid ay.
The presales and technical support call center is located in Oklahoma City, USA.
For European warranty service, dial the toll-free number for your specific location. If your location is not listed
here, dial our European CSO warranty center at +31-20-316-7222 from 8:30 A.M. to 5:00 P.M. (Central Europe
time) Monday through Friday. The CSO warranty center is located in Amsterdam, The Netherlands.
Seagate Service Centers
Toll-free support numbers
Call center Presales and Technical Support Warranty Service
Austria — 00 800-47324289
Belgium 00 800-47324283 (00 800-4SEAGATE) 00 800-47324289
Denmark 00 800-47324283 00 800-47324289
France 00 800-47324283 00 800 -47324289
Germany 00 800-47324283 00 800-47324289
Ireland 00 800-47324283 00 800-47324289
Italy 00 800-47324283 00 800-47324289
Netherlands 00 800-47324283 00 800-47324289
Norway 00 800-47324283 00 800-47324289
Poland 00 800-311 12 38 00 800-311 12 38
Spain 00 800-47324283 00 800-47324289
Sweden 00 800-47324283 00 800-47324289
Switzerland 00 800-47324283 00 800-47324289
Turkey 00 800-31 92 91 40 00 800-31 92 91 40
United Kingdom 00 800-47324283 00 800-47324289
FAX services—All Europe (toll call)
Technical Support +1-405-324-3339
Warranty Service +31-20-653-3513
76 Cheetah T10 SAS Product Manual, Rev. A
Africa/Middle East support services
For presales and technical support in Africa and the Middle East, dial our presales and technical support call
center at +1-405-324-4714 from 8:00 A.M. to 11:45 A.M. and 1:00 P.M. to 5:00 P.M. (C entral Europ e time) Mo n-
day through Friday. The presales and technical support call center is located in Oklahoma City, USA.
For warranty service in Africa and the Middle East, dial our European CSO warranty center at +31-20-316-
7222 from 8:30 A.M. to 5:00 P.M. (Central Europe time) Monday through Friday, or send a FAX to +31-20-653-
3513. The CSO warranty center is located in Amsterdam, The Netherlands.
Asia/Pacific support services
For Asia/Pacific presales and technical support, dial the toll-free number for your specific location. The Asia/
Pacific toll-free numbers are available from 6:00 A.M. to 10:45 A.M. and 12:00 P.M. to 6:00 P.M. ( Australian East-
ern time) Monday thro ugh Fr iday, except as noted. If your location is not liste d he re, d ire ct dia l on e of our tech-
nical support locations.
W arr anty service is availab le from 9:00 A.M. to 5:00 P.M., Monday th rough Friday. W arranty ser vice for Australia
is available from 10:00 A.M. to 7:00 P.M., April through October, and from 11:00 A.M. to 8:00 P.M. November
through March (Australian Eastern time) Monday through Friday.
Seagate Service Centers
Call center Toll-free Direct dial FAX
Australia 1800-14-7201 — —
China (Mandarin)1, 4 800-810-9668 +86-10-6225-5336 —
Hong Kong 800-90-0474 — —
Hong Kong (Cantonese)1, 4 001-800-0830-1730 — —
India2, 4 1-800-180-1104 — —
Indonesia 001-803-1-003-2165 — —
Japan3, 4 0034 800 400 554 — —
Korea3, 4 007 98 8521 7635 — —
Malaysia 1-800-80-2335 — —
New Zealand 0800-443988 — —
Singapore 800-1101-150 — +65-6488-7525
Taiwan (Mandarin)1, 4 00-800-0830-1730 — —
Thailand 001-800-11-0032165 — —
Customer Service Operations
Warranty Service
Call center Toll-free Direct dial FAX
Asia/Pacific — +65-6485-3595 +65-6485-4860
Australia 1800-12-9277 — —
India4— +91-44-42015000 +91-44-42015184
1Hours of operation are 8:30 A.M. to 5:30 P.M., Monday through Friday (Aus tralian Western time).
2Hours of operation are 9:00 A.M. to 6:00 P.M., Monday through Saturday.
3Hours of operation are 9:30 A.M. to 6:30 P.M., Monday through Friday.
4Authorized Service Center
Cheetah T10 SAS Product Manual, Rev. A 77
Index
Numerics
12 volt
pins 61
5 volt pins 61
A
abort task set function 45
AC coupling 61
AC power requirements 23
ACA active status 56
ACA active, faulted initiator status 56
acoustics 36
active LED Out signal 61
actuator
assembly desig n 7
adaptive caching 56
AFR 9
air cleanliness 35
air flow 42
illustrated 42
air inlet 42
altitude 33
ambient 32
ambient temperature 42
ANSI documents
SCSI 5
Serial Attached SCSI 5
asynchronous event notification 56
audible noise 3
auto write and read reallocation
programmable 8
automatic contingent allegiance 56
average idle current 23, 24
average rotational latency 11
B
Background Media Scan 39
backpanel 60
BMS 39
buffer
data 8
space 13
busy status 56
C
cache operat ion 13
cache segments 13
caching write data 14
Canadian Department of Communications 3
capacity
unformatted 11
check condition status 56
chemical pollutants 35
class B limit 3
clear ACA function 45
clear task set function 45
commands supported 47
condensation 33
condition met/good status 56
connector
illustrated 59
requirements 59
continuous vibration 35
cooling 42
corrosive environment 35
CRC
error 16
Current prof iles 25
customer service 21
D
DAR 40
data block size
modifing the 9
data heads
read/write 11
data rate
internal 11
data transfer rate 12
DC power 60
requirements 23
defect and error management 37
defects 37
Deferred Auto-Reallocation 40
deferred er ro r ha nd lin g 56
description 7
dimensions 36
disc rotation speed 11
drive 35
drive characteristics 11
drive failure 16
drive malfunction 16
drive mounting 36, 43
drive select 60
dual port support 46
E
electrical
description of connector 60
signal characteristics 61
specifications 23
electromagnetic compatibility 3
electromagnetic susceptibility 36
EMI requirements 3
78 Cheetah T10 SAS Product Manual, Rev. A
environment 42
environmental
limits 32
requirements 15
environmental control 35
error
management 37
rates 15
errors 37
F
FCC rules and regulations 3
features 8
interface 45
firmware 8
corruption 50
flawed sector reallocation 8
Format command execution time 12
function
complete, code 00 45
not supporte d, cod e 05 45
reject, code 04 45
G
Good status 56
gradient 32, 33
ground shift noise 61
grounding 43
H
HDA 42, 43
head and disc assem bly (H DA) 7
head and disc assem bly. See HDA
heads
read/write data 11
heat removal 42
heat source 42
host equipment 43
hot plugging the drive 17
humidity 33
humidity limits 32
I
Idle Read After Write 40
inquiry data 51
installation 41
guide 5
interface
commands supported 47
error rate 15
errors 16
illustrated 57
physical 57
requirements 45
intermediate/condition met/good status 56
intermediate/good status 56
internal data rate 11
internal defects/errors 37
internal drive characteristics 11
IRAW 40
J
jumpers 41
L
latency
average rotational 11, 12
logical block address 13
logical block reallocation scheme 8
logical block size 8, 12
logical segments 13
M
maintenance 15
maximum delayed motor start 23, 24
maximum start curr ent 23, 24
media description 8
Media Pre-Scan 39
miscellaneous feature support
Adaptive caching 56
Asynchrono us ev en t notification 56
Automatic contingent allegiance 56
Deferred error handlin g 56
Parameter rounding 56
Queue tagging 56
Reporting actual retry count 56
Segmented caching 56
SMP = 1 in Mode Select command 56
Synchronized (locked) spindle operation 56
Zero latency read 56
miscellaneous status support
ACA active 56
ACA active, faulted initiator 56
Busy 56
Check condition 56
Condition met/good 56
Good 56
Intermediate/condition met/good 56
Intermediate/good 56
Reservation conflict 56
Task set full 56
miscorrec te d me d ia da ta 15
Mode sense
data, table 51, 53
mounting 43
holes 43
orientations 41
Cheetah T10 SAS Product Manual, Rev. A 79
N
noise
audible 3
noise immunity 25
non-operating 33, 35
temperature 32
non-operating vibration 35
O
office environment 35
operating 33, 35
operating environmen t 16
option selection 60
out-of-plane distortion 43
P
package size 34
package test specification 5
packaged 34
parameter round ing 56
PCBA 43
peak bits per inch 11
peak operating current 23, 24
peak-to-peak measurements 25
performance characteristics
detailed 11
general 12
performance degradation 33
performance highlights 8
physical damag e 35
physical dimens ion s 36
physical interface 57
physical specifications 23
pin descriptions 60
power 61
dissipation 29
requirements, AC 23
requirements, DC 23
sequencing 25
power distribu tion 3
power-on operating hours 16
power-up hours 16
prefetch/multi-segmented cache control 13
preventive maintenance 15
Q
queue tagging 56
R
radio interference regulations 3
RCD bit 13
read error rates 15, 37
read/write data heads 11
receivers 61
recommended mounting 34
Recoverable Errors 15
recovered media data 15
reference
documents 5
relative humidity 33
reliability 9
specifications 15
reliability and service 16
repair and return information 21
reporting actual retry count 56
reservation conflict status 56
resonance 33
return information 21
rotation speed 11
S
safety 3
SASinterface 60
physical interface 57
task management functions 45
SAS documents 5
SAS Interface Manual 3, 5
SCSI interface
commands supported 47
seek error
defined 16
rate 15
seek performance characteristics 11
seek time
average typica l 11
full stroke typical 11
single track typical 11
segmented caching 56
Self-Monitoring Analysis and Reporting Technology
9, 17
Serial Attached SCSI (SAS) Interface Manual 1
shielding 3
shipping 21
shipping container 32
shock 33
and vibration 33
shock mount 43
signal
characteristics 61
single-unit shipping pack kit 10
SMART 9, 17
SMP = 1 in Mode Select command 56
spindle brake 8
standards 3
start/stop time 12
Sulfur 35
support services 73
80 Cheetah T10 SAS Product Manual, Rev. A
surface stiffness
allowable for non-flat surface 43
switches 41
synchronized spindle
operation 56
system chassis 43
T
task management functions 45
Abort task set 45
Clear ACA 45
Clear task set 45
terminate task 45
task management response codes 45
Function complete 00 45
Function not supported 05 45
Function reject 04 45
task set full status 56
technical support services 73
temperature 32, 42
limits 32
non-operating 32
regulation 3
See also cooling
terminate task function 45
terminators 41
tracks per inch 11
tracks per surface 11
transmitters 61
transportin g the dr ive 21
U
unformatted 9
Unrecoverable Errors 15
unrecovered media data 15
V
vibration 33, 35
W
warranty 21
Z
zero latency read 56
zone bit recording (ZBR) 8
Seagate Technology LLC
920 Disc Drive, Scotts Valley, California 95066-4544, USA
Publication Number: 100433694, Rev. A, Printed in USA