Table of Contents
Intel Z600 User Manual
Displayed below is the user manual for Z600 by Intel which is a product in the Processors category. This manual has pages.
Related Manuals
Document Number: 325310-001
Intel® Atom™ Processor Z6xx
Series
Datasheet
For the Intel® Atom™ Processo r Z670 on 45-nm Process
Technology
April 2011
Revision 001
2 Datasheet
INFORMATION IN THIS DOCUMENT I S PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWI SE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL'S TER M S AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND IN TEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS F OR A PARTICULAR PURP OSE, MER CHAN TABILI TY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIG HT.
UNLESS OTHERWI SE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS AR E NOT DESIGNED NOR INTEN D ED FOR ANY
APPLI CATI ON IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR
DEATH MAY OCCUR.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or character i stics of any featur es or inst ructi ons marked "res er ved" or "undefined. " Int el r eserves thes e for future
definitio n and shall have no responsibili t y w hatso ev er for conflicts or incompatibili ti es arising from future changes to them. The
informatio n here is subject to change without notice. Do not finaliz e a design with this information.
The Intel® A tom™ Pr ocessor Z670 component may contain d esign defec ts or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.
For Enhanced Intel SpeedStep® Technology : See the Process o r Spec Finder at http://ark.intel.com or contact your Intel
repr e s e n t a tive for mor e information
Intel, Intel Atom and the Intel logo are trademarks of Intel Corporation in the U. S. and other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2011 Intel Corporation. All rights reserved.
Datasheet 3
Contents
1 Introduction ................................................................................................... 6
1.1 Processor Features ...................................................................................6
1.2 Interfaces ...............................................................................................7
1.2.1 System Memory Support .............................................................7
1.2.2 Disp la y Con tr oller .......................................................................7
1.2.3 cDMI .........................................................................................7
1.2.4 cDVO ........................................................................................8
1.2.5 LVDS ........................................................................................8
1.3 Terminology ............................................................................................8
1.4 Reference Docum ents ...............................................................................9
2 Signal Descriptions ....................................................................................... 11
2.1 Sign al Descr iption .................................................................................. 11
2.1.1 System Memory Interface .......................................................... 11
2.1.2 cDMI Interface ......................................................................... 13
2.1.3 cDVO Interface ......................................................................... 13
2.1.4 LVDS Display Port Interface ....................................................... 14
2.1.5 LGI/LGIe (Legacy) Signals ......................................................... 15
2.1.6 Debu g a nd Miscellaneous Signa ls ................................................ 16
2.1.7 Power Signals .......................................................................... 17
3 Power Manageme nt ...................................................................................... 18
3.1 Proc essor Cor e Low Powe r F e a tures ......................................................... 18
3.1.1 Cx State D efinition s .................................................................. 20
4 Electrical Speci f i c ati ons ................................................................................ 22
4.1 Pow er and Gr ound Balls .......................................................................... 22
4.2 Decoupling Guidelin es ............................................................................ 22
4.3 Voltage Rail D ecoup ling .......................................................................... 22
4.4 Voltage Ide ntifica tion (VID) ..................................................................... 23
4.4.1 VID Enable .............................................................................. 23
4.4.2 VID Table ................................................................................ 24
4.5 Absolute Maximum R atings ..................................................................... 25
4.6 DC Specific a tions ................................................................................... 26
5 Thermal Specif icati ons and Design Considera t ions ....................................... 31
5.1 Tempe r a ture Monitoring ......................................................................... 32
5.2 Intel® Ther m al Monitor ........................................................................... 32
5.2.1 Digital Th e r m a l Sensor .............................................................. 34
5.2.2 Out of Specification Dete c tion .................................................... 35
5.2.3 Catastrophic Th e r m al Prot ection ................................................. 35
5.2.4 PROCHOT# Signal Pin ............................................................... 35
4 Datasheet
6 Package M echa nical S pecif i c a tions and Pi n Information ............................... 37
6.1 Package Mechanical Specifications ........................................................... 37
6.2 Proc essor Pinout Assignm ent ................................................................... 39
Figures
Figure 3-1. T hread Low Power States .................................................................. 19
Figure 3-2. P a c kage Low Power S tates ................................................................ 19
Figure 6-1. Package Mechanical Drawing ............................................................. 38
Tables
Table 2-1. Signal Types ..................................................................................... 11
Table 2-2. Buffer Types ..................................................................................... 11
Table 2-3. System Memory Interface Sign a ls ....................................................... 11
Table 2-4. cDMI Interface Signal ........................................................................ 13
Table 2-5. cDVO Interface Signals ...................................................................... 13
Table 2-6. LVDS Display Port Interface Signals ..................................................... 14
Table 2-7. LGI/LGI e Lega c y Signals .................................................................... 15
Table 2-8. Debu g a nd Miscellan eous Signals ........................................................ 16
Table 2-9. Power Signals ................................................................................... 17
Table 4-1. VIDEN Encoding ................................................................................ 23
Table 4-2. VID Table ......................................................................................... 24
Table 4-3. Absolute Maximum Ratings ................................................................. 25
Table 4-4. Voltage a nd Cu rre nt Specificati ons ...................................................... 26
Table 4-5. Differential Clock DC Spec ificati ons ...................................................... 28
Table 4-6. AGTL+, CM O S , and C MOS Open Drain Signal Group D C Specifications ..... 28
Table 4-7. CMOS1 .8 Sign a l Group DC Specification s .............................................. 29
Table 4-8. LVDS S ignal Group DC Specific ations ................................................... 29
Table 5-1. Thermal Design Power Specifications ................................................... 31
Table 5-2. Support for PRO CHOT #/THERM TRIP# in Ac tive and Idle Sta tes ............... 34
Table 6-1. P rocessor Pinout (Top View—Columns 21–31) ....................................... 40
Table 6-2. P rocessor Pinout (Top View—Columns 11–20) ....................................... 41
Table 6-3. P rocessor Pinout (Top View—Columns 1–10) ........................................ 42
Table 6-4. Pinout—Ordered by Signal Name ......................................................... 43
Datasheet 5
Revision History
Document
Number Revision
Number Description Revisio n Da te
325314 001 • Initia l r e l e as e . April 2011
§
Introduction
6 Datasheet
1 Introduction
The datasheet describes the architecture, fea tures, bu ffers, sign a l desc r iptions, pow er
managem ent, pin states, operating para m eters, and specifications for the Intel®
Atom™ Process or Z670 (Core Processor and North Compl e x).
Inte l® Atom™ Processor Z670 is the nex t ge nerati on low pow e r IA-32 processor that
is based on th e new re-partitioning arch ite cture targeted for tablets and sleek
netbooks. Th e main components of In tel® Atom™ Proc essor Z6 70 are: an IA-
compatible processor c ore derived f r om the Intel® Atom™ processor, a single-channel
32-bit DDR 2 m emory controller, a 3-D graphics engine, video decode engines , a 2-D
display c ontroller, a cDMI interfa c e link to the Intel® SM35 Expr es s Ch ips et, and an
LVDS interface to su pp or t a prim a r y display interface link. An addition a l cDVO
interface is used for pixel data to the Intel® SM35 Expres s C hipset.
Throughout this document, the Intel® Atom™ Proces s or Z670 is r ef er r ed a s the
processor and Intel® S M35 Expres s Ch ipset is referred to a s th e c hipset.
1.1 Processor Features
The following list provides s ome of the key fe a tures on th is p r oc e s sor:
• Supports Intel® Hyper-Threading Tech nology
• 2-wide instruction dec ode and in -order execution
• 512 KB, 8 way L2 cache
• Support for IA 32-b it a r chitecture
• FCM B3 packaging technology
• Ther ma l m a nagement support using TM1 and TM2
• On die D igital Thermal Sensor ( D TS) f or thermal management sup por t using
Intel® Th er m al Monitor 1 (TM1) and Intel® Thermal M onitor 2 (TM2)
• Adva nced power management f ea tures including Enhanc ed Intel® SpeedStep®
Technology
• Supports C0/C1(e)/C2(e)/C4(e) power states
• In tel Deep P ow er Down Technology (C 6)
Introduction
Datasheet 7
1.2 Interfaces
1.2.1 System Memory Support
• One channel of DDR2 memory
• 32-bit data bus
• Memory DDR2 transfer rates of 800 MT/s
• Supports 1 G b, and 2 Gb devices
• Su pp or ts total memory size of 1 GB, and 2 GB
• Provides a ggres s ive power man a gement to reduce power c onsumption when idle
• Provides proa c tive page cl os ing policies to c lose un used pa ges
1.2.2 Display Controller
• Seven display plan es : Display Plane A, Display Plane B, Display C/sprite, Overlay,
Cursor A, Cursor B, and VGA
• Display Pipe A: Supports L VDS dis pla y interface
• Display Pipe B: Supports HDMI via chipset
• Maximum r e s olution (L VDS display):
1366 x 768 @ 18 bpp an d 60 f ps
• Supports 18 bpp
• Su pp or ts Non-Power of 2 Tilin g
• Output pixel width: 24 -b it RGB
• Suppor ts N V12 video data f or m a t
• Supports 3 x 3 panel fitter
• Dynamic P ower Sav ing Technology (DPST) 3.0
• Support 16 x 256 byte tile s iz e
• Su pp or ts overlay
• Su pp or ts g lobal con stant alpha b lending
1.2.3 cDMI
• Peak ra w B W of cDMI link per direction = 400 MT / s using a quad-pumped 8-bit
transmit and an 8-bit receive data bu s
• Supports low pow er m a nagement sc hemes
• Su pp or ts CMOS interfa ce
Introduction
8 Datasheet
1.2.4 cDVO
• Peak ra w B W of 800MT/s
• Supports low pow er m a nagement sc hemes
• Supports AGTL+ interface
1.2.5 LVDS
• Maximum r e s olution (inter nal displa y) of:
• 1366 x 768 @ 18 bpp a nd 60 fps
• Dot cl ock range from 2 0 –83 M Hz
• Four differential signal pairs: Three data pairs (up to 581 Mbps on each data link)
and one clock pair
• Supports 18 bpp pa c ked an d 18 bpp loosely pack ed pixel formats
• Supports 24 bpp with a limited num ber of validated panels.
1.3 Terminology
Acronym Description
ACPI Advanced Configuration and Power Interface
AGTL+ Assis te d Gunning Transceiver Log ic Plus
CKE Clock enable
CMOS Co mple me nta ry metal-oxide semiconductor
cDMI CMOS Direc t Media I nterface
cDVO CMOS Digital Vid eo Output
DDR2 Second-generation Double Data Rate SDRAM memory technology
DQ Memory data
DQS Memory data strobe
DTS Digital thermal sensor
FSB Front side bus
GPIO General purpose input/output
GTL Gunning Tr ans c e ive r Logic
HPLL Host phase lock loop
IERR Internal error
iFSB Internal front side bus
LFM Low Frequency Mode
LGI Legacy interface
Introduction
Datasheet 9
Acronym Description
LVDS Low Voltage Differential Signaling, a high speed, low powe r data tr ans mi s s ion
standar d used for disp l ay connectio ns to LCD pane ls
MSR Model-specific register
NCTF Non-Critic al to F unc tion. NCTF locatio ns ar e typic ally redundant ground or
non-critic al reserved, so the los s of solder joint continuity at end of life
conditions will not affect the over a ll product functionality.
NMI Non-maskable interrupt
North
Complex Processor unicore which processor memory controller, Power Management
Unit and inter nal FSB Logic
ODT On Die Termination
PCH Platfo rm Controlle r Hub
PMIC Pow er Manag eme nt Inte gr ated Circuit
PMU Power Mana g ement Unit
RCOMP Resistor compensation
SCK System clock
SR Self-Refresh
TAP Test access point
TCC Thermal control circuit
TDP Thermal Design Power
TM1 Thermal Monitor 1
TM2 Thermal Monitor 2
VR Voltage regulator
1.4 Reference Documents
Document Location/
Comments
Intel® Ato m ™ Processor Z6xx Series Specification Update For the
Intel® Atom™ Processor Z670 on 45-nm Process Technology 325309-001
Intel® SM35 Express Chipset Datasheet 325308-001
Intel® SM35 Expre ss Chip s e t Spe c ific ation Update 325307-001
AP-485, Intel® Proce s so r Identification and the CPUID Instruction
http://www.intel.com/
Assets/PDF/appnote/2
41618.pdf
Introduction
10 Datasheet
Document Location/
Comments
Intel® 64 a n d I A-32 Architectures Software Developer's Manuals
Volume 1: Basic Architecture
http://www.intel.com
/products/processor/
manuals/index.htm
Volume 2A: Instr uc tion Set Reference, A-M
Volume 2B: Instruction Set Reference, N-Z
Volume 3A: Syste m Progra mming G uide
Volume 3B: Syste m Programming G uid e
NOTES:
1. Contact your Intel representative for the latest revision and document number of this
document.
§
Signal D escriptions
Datasheet 11
2 Signal Descriptions
This chapter describes the processor signals. They are arranged in functional groups
accord ing to their ass oc ia ted interface or c ategory. The following notations are used
to describe th e s ign a l ty pe.
Table 2-1. Signal T y pes
Notations Signal Type
I Input Pin
O Output Pin
I/O Bi-directional Input/Output Pin
Table 2-2. Buffer Types
Buffer Type Interface Description
AGTL+ cDVO, cDMI
Assisted Gunni ng Tr a nsc e i ve r Logic Plus:
CMOS open drain interf a ce signals that r e q uire
terminatio n. Refer to the AGTL+ I/O Specification
for complete details.
CMOS, CMOS_OD cDMI, cDVO, LGI, LGIE 1.05-V CMOS buffer or CMOS open drain.
Analog All Analog r ef er ence or out put: This may be used
as a threshol d voltage or for buffer compensati o n.
LVDS LVDS Low-voltage differential signal output buffers
CMOS1.8 DDR2 1.8-V CMOS buffer: These buffers can be
configured as Stub Series Termination Lo g ic .
2.1 Signal Description
This s ection provides a detailed d e s cription of Processor signals. The signals are
arranged in functional groups according to their associated interface.
2.1.1 System Memory Interface
Table 2-3. System Memory Interface Signals
Signal Direction
Type Description
SM_CK0 O
CMOS1.8 Differential DDR clock
SM_CK0# O
CMOS1.8 Complementary differential DDR clock.
Signal D escriptions
12 Datasheet
Signal Direction
Type Description
SM_SREN# I
CMOS1.8 Self-refresh enable: Signal from the chipse t asserted aft er
processor places DDR in self-refresh.
SM_CKE[1:0] O
CMOS1.8 Clock enable: SM_CKE is used for power control of the DRAM
devices. There is one SM_CKE per rank.
SM_CS[1:0]# O
CMOS1.8
Chip select: These signals determine whether a command is
valid in a given cyc le for the devic e s connec te d to it. Ther e is
one chip selec t s ignal for e ac h rank .
SM_RAS# O
CMOS1.8 Row address strobe: This signal is used with SM_CAS # and
SM_WE# (along w ith S M_C S#) to def ine commands.
SM_CAS# O
CMOS1.8 Column address strobe: This sig nal is used with SM_ W E#,
SM_RAS#, and S M_CS# to define com mands .
SM_WE# O
CMOS1.8 Write enable: This signal is used with SM_CAS#, SM_RAS#,
and SM_CS# to define com mands .
SM_ODT[1:0] O
CMOS1.8 On Die Termination: Active Termination Control.
SM_BS[2:0] O
CMOS1.8 Bank select: The s e sig nals def ine which banks are being
addres sed within e ac h Rank.
SM_MA[14:0] O
CMOS1.8 Multiplexed address: SM_MA signals provide multip le xed row
and column addr ess to memory.
SM_DQ[31:0] I/O
CMOS1.8 Data lines: SM_DQ signals interface to the DRAM data bus.
SM_DQS[3:0] I/O
CMOS1.8
Data strobes: These signals are used during wr ite s and are
center ed with r esp ect to da ta. During re ads, the s e signals are
driven by memory device s and are edge aligned with data.
SM_DM[3:0] O
CMOS1.8 Data mask: One bit per byte indicating which bytes should be
written.
SM_RCVENIN I
CMOS1.8 Receive enable in: This input enables the SM_DQS input
buffers during reads.
SM_RCVENOUT O
CMOS1.8 Receive enable out: Part of the feedback used to enable the
DQS input buffers during reads.
SM_RCOMP I
Analog RCOMP: Connected to high-pre c i s io n resis tor on the
motherboard. Used to dynamically calibrate the driver stre ngths.
Signal D escriptions
Datasheet 13
2.1.2 cDMI Interface
Table 2-4. cDMI Int erface Si gna l
Signal Direction
Type Description
CDMI_RCOMP[1:0] I
Analog
CDMI_RCOMP: Connected to hig h-precision resistors on
the motherb o ard. Used for compensating cDMI pull-up/pull-
down impedances.
CDMI_TX[7:0] O
CMOS Data output: quad-pump (strobed) data bus from
Processor to PCH.
CDMI_TXCHAR# O
CMOS
Data control character data control character output:
Quad-Pump (s trobe d) indication that CDMI _ T X [7:0]
contains a control character inste a d of da ta.
CDMI_TXDPWR# O
CMOS
Line wakeup for output: When asserte d, the PCH will
power-up its receivers on CDMI_TX[7:0] and
CDMI_ TXCH AR#, and CDMI_TXSTB[0].
CDMI_TXSTB_ODD#,
CDMI_TXSTB_EVEN# O
CMOS Data strobe output: Strobes for CDMI _TX[7:0] and
CDMI_TXCHAR#.
CDMI_RX[7:0] I
CMOS Data input: Quad-Pump (strobed) data bus from PCH to
Intel® Atom™ Processor Z670.
CDMI_RXCHAR# I
CMOS
Data control character input: Quad-pump (stro bed)
indicatio n that C DMI_RX[7:0] contains a control character
instead of data.
CDMI_RXDPWR# I
CMOS
Line wakeup for input: Power enable from PCH. Used to
enable Recei ve rs on CDMI_RX[ 7:0], CDMI_RXCHAR#, and
CDMI_RXSTB_ODD#.
CDMI_RXSTB_ODD#,
CDMI_RXSTB_EVEN# I
CMOS Data strobe input: Strobes for CDMI_RX[7:0] and
CDMI_RXCHAR#.
CDMI_GVREF I
Analog
Strobe Signals' Reference Voltage for DMI: Externally
set by means of a passive voltage divider. Voltage should be
1/2 VCCP when conf ig ured for CMOS.
CDMI_CVREF I
Analog
Non-Strobe Sign als' Referenc e V oltage f or DMI:
Externa lly set by means of a passive voltage divider.
Voltag e sho uld be 1/2 VCCP when configured for CMOS.
2.1.3 cDVO Interface
Table 2-5. cDVO Interface Signals
Signal Direction
Type Description
CDVO_RCOMP[1:0] I
Analog
CDVO_RCOMP: Connected to hig h-precision resistors on
the motherb o ard. Used for compensating pull-up/pull-
down impedances.
CDVO_TX[5:0] O
AGTL+ Data output: Quad-pump (strobed) data bus from Intel®
Atom™ Pr oces sor Z6 70 to PCH.
Signal D escriptions
14 Datasheet
Signal Direction
Type Description
CDVO_STALL# I
AGTL+ Stall: Allows PCH to throttle the se nd i ng of display data.
CDVO_TXDPWR# O
AGTL+
Line wakeup for output: When asserte d, the PCH will
power-up its receivers on CD V O_TX[5:0] and
CDVO_TXSTB_ODD#.
CDVO_TXSTB_ODD#,
CDVO_TXSTB_EVEN# O
AGTL+ Data strobe output: Str obes for CDVO_TX[ 5:0].
CDVO_VBLANK# I
AGTL+ Vertical blank: Indication from PCH indicating the s tart of
the vertical b lank p er iod .
CDVO_GVREF I
Analog
Strobe signals' reference voltage for CDVO: Externally
set by means o f a passive voltage divider. Voltage should
be 2/3 VCCP when configured for GTL.
CDVO_CVREF I
Analog
Non-Strobe Sign als' Referenc e V oltage f or CDVO:
Externa lly set by means of a passive voltage divider.
Voltag e sho uld be 2/3 VCCP when configured for GTL.
2.1.4 LVDS Display Port Interface
Table 2-6. LVDS Display Port Interface Signals
Signal Direction
Type Description
LA_DATAN[3:0] O
LVDS Differential Data Output (Negative)
LA_DATAP[3:0] O
LVDS Differential Data Output (Positive)
LA_CLKN O
LVDS Differential Clock Output (Negativ e)
LA_CLKP O
LVDS Differential Clock Output (Positive)
LA_IBG I
Analog External Voltage Ref BG: Connecte d to high-precision
resis tor on motherb oard to VSS.
LA_VBG I
Analog External Voltage Ref BG: Requires external 1.25 V ±2%
supply.
Signal D escriptions
Datasheet 15
2.1.5 LGI/LGIe (Legacy) Signals
Table 2-7. LGI/LGIe Legacy Signals
Signal Direction
Type Description
VID[6:0] O
CMOS
Voltage ID: Connects to PMIC. Indicates a desired vo ltag e
for either VCC or V NN depending on the VIDEN[] pins.
Resolution of 12.5 mV.
VIDEN[1:0] O
CMOS
Voltage ID enable: Connec ts to PMIC. Indicates which
voltag e is being spe c if i ed on the VID pins:
00 = VID is invalid
01 = VID = VCC
10 = VID = VNN
11 = RS VD
THERMTRIP# O
CMOS_OD
Catastrophic Thermal Trip: Th e pr ocessor protects itself
from catastr op hic ov er he ating by us e of an inter nal the rmal
sensor. This sens or is set well abo ve the normal operating
temperature to ensure that there ar e no false trip s . The
proce ssor will sto p all exe c uti o n w he n the junc tio n
temperatur e exc eeds approxim at el y 120° C. This condition is
signaled to the sys tem by the THERMTRI P# (Ther ma l Trip )
pin.
PROCHOT#
I/O
O:
CMOS_OD
I: CMOS
Processor hot: As an output, PROCHO T# (processor hot)
will go activ e whe n the proce ssor temperature monito ring
sensor detects that the processor has reached its maximum
safe oper a ting tempe r a tur e . This indicate s that the proc ess or
Thermal Control Circuit (TCC) has been activated, if e nab led.
As an input, asserti o n of PROCHO T# by the syste m will
activate the TCC , if enable d . The TC C will re ma in ac tive until
the system de-ass erts PR OCHOT# .
VSSSENSE,
VCCSENSE,
VNNSENSE
O
Analog
Voltage sense: Connects to PMIC. Voltage Regulator must
connect feedback lines for VCC, VSS, and VNN to these pins on
the packag e .
BSEL1 O
CMOS
BSEL1: Selects external reference clock for DDR 2, cDMI, and
cDVO frequencies.
1 = Reserved
0 = 100 MHz, for cDVO/DDR2-800MT/s.
IERR O
CMOS
IERR: Internal error indic a tion (de bug). Positive l y asserted.
Asserte d whe n the proce ssor has had an inter nal error and
may have unexpecte dly stopped executing. A s ser tion of IERR
is usually ac co mpanie d by a SHUTDOWN tra ns ac tion internal
to Processor which may result in assertion of NMI to the
proce ssor . The pro ces sor w ill ke ep IERR as ser ted until the
POWERMODE[] pins take Processor to reset or Processor
receives a reset message over cDMI.
GTLREF0 I
Analog Voltage reference for BPM[3:0]#: 2/3 VCCP by mean s of an
external voltage divider: 1k Ω to VCCP, 2 KΩ to VSS.
GTLREF1 I
Analog Voltage reference: 2/ 3 V CCP by me a ns of external volta g e
divider: 1 KΩ to VCCP, 2 KΩ to VSS.
Signal D escriptions
16 Datasheet
Signal Direction
Type Description
PWRMODE[2:0] I
CMOS
Power mode: The chipset is expected to sequence Processor
throug h var ious sta te s using the PO WERMO DE[] pins to
facilitate c o ld res e t, and warm reset.
BCLK_P/N I
CMOS Reference clock: D ifferential 100 MHz.
2.1.6 Debug and Miscellaneous Signals
Table 2-8. Debug a nd Miscellaneous Signals
Signal Direction
Type Description
BPM[3:0]# I/O
AGTL+ Break/perf monitor: Various debug input and output
functions.
PRDY# I/O
AGTL+
Probe mode ready: The processor’s respons e to a PRDY#
asser tion. This signal indic a tes that the processor is in probe
mode. Input is unused.
PREQ# I/O
AGTL+
Probe mode request: Assertion is a request for the
proce ssor to enter pro be mode. Pr oc e ssor will r e spond with
PRDY# assertion once it has entered. PREQ# ca n be enabled
to cause the processor to break from C4 and C6. Internal
51 Ω pull up, so no external pull-up req uired.
TCK I
CMOS
Processor JTAG test clock: This s ignal provides the clo ck
input for the pro ces so r Tes t Bus (also known as the Test
Access Port). Requi r es an external 51 Ω resistor to Vss.
TDI I
CMOS
Processor JTAG test data input: This s ignal transfers
serial te s t data into the proc ess or . T DI prov ides the serial
input needed for JTAG specification support. Requires an
external 51 Ω resistor to VCCP.
TDO O
OD
Processor JTAG test data output: This sig nal transfers
serial te s t data out of the process or . TDO prov id es the seri al
output nee ded for JTA G spec ific ation support. Requires an
external 51 Ω resistor to VCCP.
TMS I
CMOS
Processor JTAG test mode select: A JTAG spe c ific ati o n
support signal used by debug tools. Requires an external 51
Ω resistor to VCCP.
TRST# I
CMOS
Processor JTAG test reset: As y nc hro nous ly rese ts the Test
Access Por t (TAP) lo g ic . TRST# must be driv e n asserted
(low) during processor power on reset.
Processor has an internal 51 Ω pull-up to VCCP, unlik e the
Pentium M proc ess or , the Intel® Core™2 processo r , and the
Intel® Atom™ Z5xx processor. The Processor pull-up
matches the Intel® Pentium® 4 processor and the IEEE
specification.
RSVD These pins shou l d be treat ed a s no connection (NC).
Signal D escriptions
Datasheet 17
2.1.7 Power Signals
Table 2-9. Power Si gnals
Signal Type Description
VCC PWR Processor core supply voltage: Power supply is required for
processor cycles.
VNN PWR North Complex logic and graphics supply voltage.
VCCP PWR cDMI, cDVO, LGI, LGIe, JTAG, RCOMP, and power gating
supply voltage. Needed fo r most bus a ccesses. Cannot be
connec te d to VCCPAOAC during Standby or Self-Refresh states.
VCCPDDR PWR DDR DLL and logic supply voltage: Required for memory bus
accesses . Requires a separate rail with nois e isola tio n.
VCCPAOAC PWR JTAG, C6 SRAM supply voltage: Needs to be on in Active or
Standby.
LVD_VBG PWR LVDS band gap supply voltage: Needed for LVDS display.
VCCA PWR HPLL Analog PLL and thermal sensor supply voltage.
VCCA180 PWR LVDS analog supply voltage: Neede d for LVD S disp lay. Requires a
separate rail w ith no is e isolation.
VCCD180 PWR LVDS I/ O supply voltage: Needed for LVDS display.
VCC180SR PWR DDR2 self-refresh supply voltage: P owered during Active,
Standby, and Self-Refresh states.
VCC180 PWR DDR2 I/ O supply voltage Required for memory bus acces ses.
Cannot be conne c ted to VCC180SR during Standby or Self-Refresh
states.
VMM PWR I/O supply vol tage.
VSS Ground pin
§
Power Man ageme nt
18 Datasheet
3 Power Management
Processor supports fine grain pow er ma nagement by having s evera l pa r tit ion s of
voltage islan ds created through on-die power switches. T he Intel® Sm art Powe r
Tech nology (Intel® SPT) softw a r e determ ines the m ost power efficient sta te for the
platform at any g iven point in time a nd then provides guid a nce to tu r n ON or OFF
differ e nt voltage islands on processor. For the scenario w here In te l® SPT has directed
the processor to go in to an Intel® SIT idle mode, the processor waits for all partitions
with s hared voltage to reach a s af e point and then turns them off.
3.1 Processor Core Low Power Features
When the proc e s s or core is idle, low-power idle s tates (C-states) are used to save
power. More power savings actions are taken for numerica lly high e r C-states.
However , higher C-states have longer exit and e ntry laten c ies.
Figure 3-1 shows the thread low power states. Figure 3-2 shows the package low
power states.
Note: STPCLK#, DPSLP#, and DPRSTP are internal sig nals on ly.
Power Man ageme nt
Datasheet 19
Figure 3-1. Thread Low Power States
C2
†
C0
Stop
Grant
Core state
break
P_LVL2 or
MWAIT(C2)
C1/
MWAIT Core state
break
MWAIT(C1)
C1/Auto
Halt
Halt break
HLT instruction
C4
†
/C6
Core State
break
P_LVL4 or
P_LVL6
ø
MWAIT(C4/C6)
STPCLK#
de-asserted
STPCLK#
asserted
STPCLK#
de-asserted
STPCLK#
asserted
STPCLK#
de-asserted
STPCLK#
asserted
halt break = A20M# transition, INIT#, INTR, NMI, PREQ#, RESET#, SMI#, or APIC interrupt
core state break = (halt break OR Monitor event) AND STPCLK# high (not asserted)
† — STPCLK# assertion and de-assertion have no effect if a core is in C2 or C4.
Ø
— P_LVL6 read is issued once the L2 cache is reduced to zero.
Figure 3-2. Package Low Power Sta t es
DPRSTP# de-asserted
DPRSTP# asserted
Snoop
serviced
Snoop
occurs
STPCLK# asserted
STPCLK# de-asserted
SLP# asserted
SLP# de-asserted DPSLP# de-asserted
DPSLP# asserted
Stop
Grant
Snoop
Normal Stop
Grant
Deep
Sleep
††
Deeper
Sleep
†
Sleep
††
† — Deeper Sleep includes the C4 and C6 states
†† — Sleep and Deep Sleep are not states directly supported by the processor, but rather sub-states of Silverthorne’s C4/C6
Power Man ageme nt
20 Datasheet
3.1.1 Cx State Definitions
• C0 State—Full On
This is the only s tate that r uns s oftwar e. All clocks are running and the processor
core is active. The processor can service snoops and maintain cache coherency in
this state. All pow er m a nagement f or interfaces, cloc k gating , are contr olled at the
unit level.
• C1 State—Auto-Halt
The first lev el of power reduction occurs when the core processor executes an
Auto-Halt instru c tion. This stops the execution of the instru ction stre a m and greatly
reduces th e c or e pr oces s or’s power consumption. The core processor can service
snoops and maintain cache coherency in this state . The Processor North Complex
logic does not d is tinguis h C1 f r om C0 explic itly.
• C2 State—Stop G r a nt
The next lev el of power r e duction occurs when the core processor is placed into the
Stop Grant state. The core processor can service snoops and maintain cache
cohere ncy in this s ta te. The Nor th Comple x only s upports rece iving a single Stop
Grant.
Entr y into the C2 state w ill occur a fter the core processor requests C 2 ( or d ee per).
C2 state will be exited, entering the C 0 s ta te, when a break event is detecte d.
Processor must ensure that the DLLs a r e a w a ke and the memory will be out of self-
refresh at this point.
• C1E and C2E States
C1E and C2E states are transpar ent to the n or th complex logic. The C1E state is
the same as the C1 state, in that the core processor emits a HALT cycle when
entering the sta te . Ther e a r e no other visible ac tions from the c or e pr ocessor.
The C2E state is the same as the C2 state, in th a t the core proce s s or emits a Stop
Grant c y c le wh en entering the state. There are no other visible actions from th e
core processor.
• C4 State—Deeper Sleep
In this state, the core pr ocessor shu ts d own its P L L an d c annot ha ndle sn oop
reques ts. Th e c or e pr ocessor voltage r eg ulator is also told to reduce the process or ’s
voltage. Du ring the C4 s ta te, the Nor th Comple x will c ontinu e to handle tr a ffic to
memory so long as this traffic does not require a snoop (i.e., no coherent traf fic
requests are serviced).
The C4 state is entered by r ec eiv ing a C4 requ es t f r om the core processor / O S . The
exit from C4 occurs when the North Com plex detects a s noopable event or a br eak
event, wh ic h would ca use it to wak e up the core processor and initiate the C0
sequence.
Power Man ageme nt
Datasheet 21
• C4E
The C4E sta te is essentially the same as the C4 state except that th e c or e
process or will tra nsition to the Low Fr e quency Mode (LFM ) frequency a nd voltage
upon entry and exit of this state.
• C6—Deep Po wer Down
Prior to entering the C6 state, the c or e pr ocess or will flush its cache and save its
core context t o a s p ecial on-die SRAM on a differen t power plane. Onc e the C6
entry sequence h a s completed, the core pr oces s or ' s voltage can be completely shut
off.
The key dif ference f or the North C om plex logic betw een the C4 state and the C6
state is that sin ce the cor e proces sor's c ache is em p ty, there is no need to perform
snoops on the in ter nal FS B. This means that bus ma ster e vents ( which would ca use
a popup from the C4 state to the C2 state) can be allowed to flow un im peded
during the C6 state. However, the core processor m ust still be retur ned to the C0
state to servic e interru pts.
A residenc y counter is r ead by the core processor to enable an intelligent
promotion/d em otion based on energy awareness of transitions and history of
residencies/transitions.
§
Electrical Specifications
22 Datasheet
4 Electrical Specifications
This chapter contains signal gr oup descr iptions, a bs olute maximum r atings, voltage
identification and power sequen cing. Th is chapter a lso includes DC s pe c ificati ons.
4.1 Power and Ground Balls
The processor has Vcc and Vss (groun d) in puts for on -c hip power distribution . All
power balls mu s t be c on nected to their r es pective pr oces s or pow er planes, while all
Vss balls m ust be connec ted to th e s ystem groun d plane. Us e of multiple powe r a nd
ground planes is recomm ended to reduc e I*R drop. T he Vcc balls mus t be s upplied
with the voltage d etermined by the proc e s s or Volta g e Identification (VID) signals.
4.2 Decoupling Guidelines
Due to lar g e number of transistors and high inter nal clock speeds, th e pr oc essor is
capable of gen er a ting larg e c urrent swings between low and fu ll power s ta tes. This
may c ause voltag es on po wer plan e s to sag below their minimum values, if bulk
decouplin g is not adequate. Larger bulk storage (CBULK), such as electrolytic
capacitors, supply current during lon ger las ting chan ges in current demand (for
examp le, comin g out of an idle cond ition ) . Simila r ly, cap a citors ac t a s a stora ge well
for curren t when en tering an idle condit ion from a runn ing cond ition. To keep
voltages with in specif ic a ti on, output decoupling m ust be properly designed.
Caution: Design the boa r d to ens ure tha t the voltag e provided to the pr oc essor r emains within
the spec ification. F ailure to do s o can re s ult in timing violations or r e duced lifetime of
the processor.
4.3 Voltage Rail Decoupling
The voltage regulator s olution needs to pr ovide:
• Bulk capacitance with low effective series resistance (ESR).
• A low pa th impedance fr om the regulator t o the pro c e s sor.
• Bulk decoupling to compensate for large current swings gener a ted during power-
on, or low-power idle state entry/exit.
The power deliv er y solution m ust en su r e that the voltage and c urren t s p ec ifications
are met, as defined in Table 4-4.
Electrical Specifications
Datasheet 23
4.4 Voltage Identification (VID)
The VCC and VNN voltage inputs use two encoding pins ( VIDEN[1:0] ) to en a ble the VID
pin inputs a nd seven voltage iden tification pins (V ID[6:0]) to selec t th e power supply
voltage. The V ID/VIDEN pin s for th e p r oc e s sor are CM O S outpu ts driven b y the
processor VID circuitry. Table 4-2 specifies the v oltage level corresponding to the
state of VID[ 6:0]. A “1” in this r e fers to a high-v oltage level an d a “0” refer s to a
low-voltage level. F or m ore details abou t PMIC design to s upport th e processor power
supply requirements, r efer to the ven dor’ s s pec ification .
4.4.1 VID Enable
Both VCC and VNN are va r iable in Intel® Atom™ Proces sor Z670. Processor implements
a new VI D mec ha nism that minimiz es th e number of r equired pins. T he VID for VNN
and VCC are multiplexed on to the same set of pins and a separa te 2-bit enable/ ID is
defined to specify what the d r iven V ID corr es p onds to. O ne of th e combina tions is
used to notify that the VID is in valid. T his is used when th e processor is in C6/Standby
to tri-state th e VID pins to save power .
Table 4-1. VIDEN Encod ing
VIDEN[1:0] Description
00b VID is invalid
01b VID for VCC
10b VID for VNN
11b Reserved
Electrical Specifications
24 Datasheet
4.4.2 VID Table
Note:
1. Processor will not suppor t the entire range of th e voltag es listed in the VID table
(grayed out).
2. VI D c odes below 0. 3 V are not su ppor ted f or VCC.
Table 4-2. VID Tabl e
VID[6:0] VCC /VNN VID[6:0] VCC /VNN VID[6:0] VCC /VNN VID[6:0] VCC /VNN
00h 1.5000V 20h 1.1000V 40h 0.7000V 60h 0.3000V
01h 1.4875V 21h 1.0875V 41h 0.6875V 61h 0.2875V
02h 1.4750V 22h 1.0750V 42h 0.6750V 62h 0.2750V
03h 1.4625V 23h 1.0625V 43h 0.6625V 63h 0.2625V
04h 1.4500V 24h 1.0500V 44h 0.6500V 64h 0.2500V
05h 1.4375V 25h 1.0375V 45h 0.6375V 65h 0.2375V
06h 1.4250V 26h 1.0250V 46h 0.6250V 66h 0.2250V
07h 1.4125V 27h 1.0125V 47h 0.6125V 67h 0.2125V
08h 1.4000V 28h 1.0000V 48h 0.6000V 68h 0.2000V
09h 1.3875V 29h 0.9875V 49h 0.5875V 69h 0.1875V
0Ah 1.3750V 2Ah 0.9750V 4Ah 0.5750V 6Ah 0.1750V
0Bh 1.3625V 2Bh 0.9625V 4Bh 0.5625V 6Bh 0.1625V
0Ch 1.3500V 2Ch 0.9500V 4Ch 0.5500V 6Ch 0.1500V
0Dh 1.3375V 2Dh 0.9375V 4Dh 0.5375V 6Dh 0.1375V
0Eh 1.3250V 2Eh 0.9250V 4Eh 0.5250V 6Eh 0.1250V
0Fh 1.3125V 2Fh 0.9125V 4Fh 0.5125V 6Fh 0.1125V
10h 1.3000V 30h 0.9000V 50h 0.5000V 70h 0.1000V
11h 1.2875V 31h 0.8875V 51h 0.4875V 71h 0.0875V
12h 1.2750V 32h 0.8750V 52h 0.4750V 72h 0.0750V
13h 1.2625V 33h 0.8625V 53h 0.4625V 73h 0.0625V
14h 1.2500V 34h 0.8500V 54h 0.4500V 74h 0.0500V
15h 1.2375V 35h 0.8375V 55h 0.4375V 75h 0.0375V
16h 1.2250V 36h 0.8250V 56h 0.4250V 76h 0.0250V
17h 1.2125V 37h 0.8125V 57h 0.4125V 77h 0.0125V
18h 1.2000V 38h 0.8000V 58h 0.4000V 78h 0.0000V
19h 1.1875V 39h 0.7875V 59h 0.3875V 79h 0.0000V
1Ah 1.1750V 3Ah 0.7750V 5Ah 0.3750V 7Ah 0.0000V
1Bh 1.1625V 3Bh 0.7625V 5Bh 0.3625V 7Bh 0.0000V
Electrical Specifications
Datasheet 25
VID[6:0] VCC /VNN VID[6:0] VCC /VNN VID[6:0] VCC /VNN VID[6:0] VCC /VNN
1Ch 1.1500V 3Ch 0.7500V 5Ch 0.3500V 7Ch 0.0000V
1Dh 1.1375V 3Dh 0.7375V 5Dh 0.3375V 7Dh 0.0000V
1Eh 1.1250V 3Eh 0.7250V 5Eh 0.3250V 7Eh 0.0000V
1Fh 1.1125V 3Fh 0.7125V 5Fh 0.3125V 7Fh 0.0000V
4.5 Absolute Maximum Ratings
Table 4-3 spec ifies absolute max im um an d m inimum rating s . Within functional
operat ion limits , functionality an d long-term rel ia bility can be expected.
At con ditions outside f unctional operation condition limits, but with in absolute
maxim um an d minimu m ratin gs, neither functionality nor long term reliabili ty can b e
expected . If a device is returned to conditions within functional operation limits after
havin g been subjected to conditions ou tside these limits, b ut within the a bs olute
maxim um an d minimu m ratin gs, the d evice may be function al, but with its lifetime
degraded depen ding on exposure to con ditions exceeding the f unctiona l opera tion
condition limits.
At con ditions e xceeding a bsolute maximum an d m inimum r atings, neithe r functiona lity
nor long term r eliability can be ex pec ted. M or eov er , if a device is subjec ted to t hese
conditions f or any le ngth of time , then when returned to condition s within the
functiona l ope r a ting cond ition lim its, it will eith e r not function or its reliabi lity w ill be
severely degr a ded.
Although th e processor c onta ins protective c ir c uitry to resist d a m age f r om stati c
electr ic disch a r g e, preca ution s should alway s be ta ken to avoid high static voltages or
electr ic fields.
Table 4-3. Absolut e Max imum Ratings
Symbol Parameter Minimum Maximum Unit Note
VCC Processor core supply voltage -0.3 1.1 V
VNN North Complex logic an d GFX supply
voltage -0.3 0.95 V
VCCP/VCCQ cDMI, cDVO, LGI, LGIe -0.3 1.1 V
VCCPDDR 1.05-V DDR2 DLL and logic supply
voltage -0.3 1.1 V
VCCPAOAC 1.05-V JTAG, C6 SR AM -0.3 1.1 V
VMM 1.2-V I/O supply voltage -0.3 1.25 V
LVD_VBG 1.25-V LVDS band gap supply voltage -0.1 1.28 V
VCCA 1.5-V HPLL analog PLL and thermal
sensor supply voltage -0.3 1.575 V
VCCA180 1.8-V LVDS analog supply voltage -0.3 1.9 V
Electrical Specifications
26 Datasheet
Symbol Parameter Minimum Maximum Unit Note
VCCD180 1.8-V LVDS I/O supply voltage -0.3 1.9 V
VCC180SR 1.8-V DDR2 self-refresh supply
voltage -0.4 1.9 V
VCC180 1.8-V DDR2 I/O supply voltage -0.4 1.9 V
TJ Operational junction temperature 0 90 °C 1,2
TSUSTAINED
STORAGE The ambient storage temp erature
limit (in shipp ing m e d ia) for a
sustained period of time. -5 °C 40 °C °C 4
RHSUSTAINED
STORAGE The maximum device storag e relativ e
humidity fo r a sustaine d period of
time. 60% @ 24 °C 4,5
TIMESUSTAINE
D S TO RAGE A prolonged or ext e n ded peri od of
time; typi c ally associated with
customer she lf life . 0 6 Months 5
NOTE:
1. As measure d by the activ a tio n of the o n-die Inte l® Therm al Monito r. The Intel Therm al
Monitor ’ s autom atic mod e is used to ind ic ate that the m aximum T J has been reached.
Refer to Section 5.2 for more details.
2. The Intel The rmal Monitor autom atic mod e must be enab led for the proc e ssor to
operate within specifications.
3. The stor ag e tempe rature is applicable to s tor age conditions only. Storage within these
limits will no t aff e c t the lo ng -term reliability of the device. For functional operation,
refer to the processor case temperature specifications.
4. The JEDEC, J-JSTD-020 moisture lev e l rating and as soc ia ted handling practices app ly to
all moistur e se ns itive devices removed from the moisture barrier bag.
5. Nominal tem p er ature and humidity cond itio ns a nd durations are given and tested
within the co ns traints imposed by TSUSTAINED and customer shelf life in applicable Intel
box and bags.
4.6 DC Specifications
Table 4-4. Voltage a nd Current Specific a t ions
Symbol Parameter Min. Typ. Max. Unit Notes
1,2
VCCHFM VCC @ Highest Frequency Mode AVID − 1.15 V 3
VCCLFM VCC @ Lowest Frequency Mode 0.7 − AVID V 3
VCCBOOT Default VCC for initial pow e r on VCCLFM V 4
VNNBOOT VNN V 4
VNN VNN supply voltage 0.75 0.95 V 3
VCCP VCCP supply voltage 0.9975 1.05 1.1025 V 4
VCCQ VCCQ supply voltage 0.9975 1.05 1.1025 V
VCCPDDR VCCPDDR supply voltage 1.029 1.05 1.071 V 5
Electrical Specifications
Datasheet 27
Symbol Parameter Min. Typ. Max. Unit Notes
1,2
VCCPAOAC VCCPAOAC supply voltag e 0.9975 1.05 1.1025 V
VMM VMM supply voltage 1.14 1.20 1.26 V
LVD_VBG LVDS band ga p ref eren ce
voltage 1.225 1.25 1.275 V
VCCA VCCA supply voltage 1.47 1.5 1.53 V
VCCA180 VCCA180 supply vo ltag e 1.746 1.8 1.854 V
VCCD180 VCCD180 supply voltage 1.71 1.8 1.89 V
VCC180SR VCC180SR supply voltage 1.71 1.8 1.89 V
VCC180 VCC180 supply voltage 1.71 1.8 1.89 V
IVCC
Processor
Number Core Frequen cy − − − −
Z670 HFM: 1.5 GHz
LFM: 0.6 GHz − − 2.50 A 6,7
IVNN VNN supply current − − 1.60 A 7
IVCCP VCCP supply current − − 0.121 A 7
IVCCQ VCCQ s upp ly current − − 0.015 A 7
IVCCPDDR VCCPDDR supply current − − 0.150 A 7
IVCCPAOAC VCCPAOAC supply current − − 0.030 A 7
IVMM VMM supply current − − 0.010 A 7
IVCCA VCCA supply current − − 0.150 A 7
IVCCA180 VCCA180 supply curr e nt − − 0.050 A 7,8,9
IVCCD180 VCCD180 supply current − − A
IVCC180SR VCC180SR supply current − − 0.010 A 7
IVCC180 VCC180 supply current − − 0.400 A 7
NOTES:
1. Maximum specif ic ati o ns are based on measure me nts done with cur re ntly existing
workloads and test condi tio ns . The s e numb er s are sub jec t to change .
2. Specified at TJ = 90°C.
3. Each processor is progr a mmed w ith a maxim um valid volta g e identification value
(VID), whic h is se t at manufactur ing and cannot be altered. I nd ivid ual maximum VID
values are calibrated during manufa c tur i ng s uc h that two proce ssor s at the same
freque ncy may have differ e nt setting s w ithi n the VID range. N o te that this differs from
the VID employe d by the process or dur ing a power management e vent (The rmal
Monitor 2, Enhanc e d Intel Sp eed S tep® Tec hnology, or Enhanced Halt State ). Typi c al
AVID range is 0.70V to 1.15V for VCC a nd 0.75V to 0.95V for VNN.
4. This specific ation correspo nds to what v alue g e ts driven by the proc essor. It is
possible for firmware to override these values.
5. Voltage specification of ±2% includes AC and DC variations. The sum of AC noise and
DC variations s hould not exceed 1.05V ±2%.
6. Specified at the nominal V CC.
7. Peak Sustained Cur rent is define d as the maximum sustainable current measured as an
RMS value over 1μs.
Electrical Specifications
28 Datasheet
8. This is the sum of current on both rails.
9. Specification based on LVDS panel configuration of 1024x600 resolution, 60Hz re fresh
rate, and 18 bpp color dep t h .
Table 4-5. Differential Clock DC Specifications
Symbol Parameter Min. Typ. Max. Unit Notes
Differe ntial C lock (BCLK)
VIH Input high voltage − − 1.15 V
VIL Input low voltage − − -0.3 V
VCROSS Crossing voltage 0.3 − 0.55 V
ΔVCROSS R ange of crossing points − − 140 mV
VSWING Dif fere ntial output swi ng 300 − − mV
ILI Input leakage current -5 − +5 µA
CPAD Pad capacitance 1.2 1.45 2.0 pF
Table 4-6. AGTL+ , CM OS, and CMOS Open D ra in Signal Gr oup DC Spec ificati ons
Symbol Parameter Min. Typ. Max. Unit Notes
GTLREF GTL reference voltage − 2/3
VCCP
− V
CMREF CMOS reference voltage − 1/2
VCCP − V
RCOMP Compensation resistor 27.73 27.5 27.78 Ω 10
RODT Terminatio n re s is tor − 55 − Ω 11
VIH (GTL) Input high voltage GTL signal GTLREF
+ 0.10 VCCP VCCP +
0.10 V 3, 6
VIL (GTL) Input low voltage GTL signal -0.10 0 GTLREF
– 0.10 V 2, 4
VIH (CMOS) Input high voltage CMOS signal CMREF
+ 0.10 VCCP VCCP +
0.10 V 3, 6
VIL (CMOS) Input low voltage CMOS signal -0.10 0 CMREF
– 0.10 V 2, 4
VOH Output high voltage VCCP –
0.10 VCCP VCCP V 6
RTT (GTL) Termination res is tanc e 46 55 61 Ω 7
RTT (CMOS) Termination resis tanc e 46 55 61 Ω 11
RON (GTL) GTL buffer on resistance 21 25 29 Ω 5
RON (CMOS) CMOS buffer on resistance 42 50 55 Ω 12
RON
(CMOS_C) CMOS comm on clock b u ffer on
resistance 42 50 58 Ω 12
ILI Input leakage current − − ±100 µA 8
CPAD Pad capacitance 1.6 2.1 2.55 pF 9
Electrical Specifications
Datasheet 29
NOTES:
1. Unless otherwise noted, all specif ic ations in this table app ly to all proce s so r
frequencies.
2. VIL is defined as the maximum voltag e leve l at a receiv ing age nt that w ill be
interpreted as a logical low value.
3. VIH is defined as the minimum voltag e lev e l at a receiving agent that will be
interpreted as a logical high value.
4. VIH and VOH may experience exc ursions above VCCP. However , input sig na l dr ivers
must comply with the sig nal quality s pecifications.
5. RON is the pull-down driver resistance. Refer to processor I/O Buffer Models for I/V
characte ristics. Measure d at 0.33*VCCP.
6. GTLREF and CMREF should be ge ner ate d from VCCP with a 1% toler ance res is tor
divid er. The VCC P refe rr ed to in these sp e c ifica tio ns is the instantane o us V CC P.
7. RTT is the on-die termination re s is tanc e mea s ured at VOL of the AGTL+ output dr iver.
Measure d at 0.33*V CCP. RTT is connected to VCCP on die. Refer to proces sor I/O
buffer mode l s for I/V char a c teris tic s .
8. Specified with on die RTT and RON are turned off. VIN between 0 and VCCP.
9. CPAD includes die capacitance only. No package parasitic s are included.
10. This is the external resisto r on the compo ne nt pins.
11. On die termination resistanc e for CMO S is measure d at 0.5*VCCP.
12. RON for CMOS pull-down driver resistance. Refer to processor I/O Buffer Models for I/V
characteristics. Measured at 0.5 *VCCP.
Table 4-7. CMOS1.8 S ignal Group DC Speci ficat ions
Symbol Parameter Min. Typ. Max. Unit Notes
VIH Input high voltage (VCC180/2)
+ 0.125
− 1.9 V
VIL Input low voltage -0.4 − (VCC180/2)
- 0.125 V
VOH Output high voltage (VCC180/2)
+ 0.25 − − V
VOL Output low voltage − − (VCC180/2)
- 0.25 V
NOTES:
1. Unless otherw i se noted , all specif i c ations in this table apply to all proc e s sor
frequencies.
2. VIL is defined as the maximum voltag e leve l at a receiving agent that will be interp reted
as a logical low value.
3. VIH is defined as the minimum volta g e leve l at a receiving age nt that w ill be interpreted
as a logical hig h value .
4. VIH and VOH may experie n ce excursions above VCCP. How ever , inp ut s ignal drivers must
comply with the s ig na l quality s pec ifications .
Table 4-8. LVDS Si gna l Gr oup DC Spec ific a t ions
Symbol Parameter Min. Typ. Max. Unit Notes
VOS Offset voltage 1.125 1.25 1.375 V
∆VOS Change in offset vo ltage − − 50 mV
VOD Differential outp ut vo ltage 250 350 450 mV
Electrical Specifications
30 Datasheet
Symbol Parameter Min. Typ. Max. Unit Notes
∆VOD Change in differential o utput
voltage − − 50 mV
ISC Short-circuit curre nt − − 12 mA
ISCC Short-circ uit c o m ment curr e nt − − 24 mA
IL Leakage current -380 150 380 µA
Dynamic offse t − − 150 mV
Overshoot 50 70 90 mV
Ringback 50 70 90 mV
NOTE: Unless otherwise noted, all specifications in this table app ly to all proce s so r fr eque nc ie s .
§
Thermal Speci ficat ions and Desig n C onsider a tions
Datasheet 31
5 Thermal Specifications and
Design Considerations
The pr ocessor r eq uires a thermal solution to maintain temper atures within op erating
limits as set forth in Table 4-3. Any attemp t to oper a te the processor ou tside thes e
operat ing limits may r e s ult in per m a nent da m a g e to the pr oc e s s or and potentially
other compon ents in the system . Main ta ining th e pr op er therma l environment is the
key to r eliable, long-term s ystem operation. A complete therma l s oluti on includes both
compone nt and s ystem level therm al management features .
Note: Trading the r m al solutions also involves trad ing perfor m a nce.
To allow for the op timal operati on and long-term r e liability of Intel proces sor-based
systems, the system/processor thermal solution should be designed su c h that the
process or rema ins within the m inimum a nd maximum j unction tempera ture (T J)
specif ic ations at the c or r e sponding Ther mal Design Power (TDP) value listed in
Table 5-1. Thermal s olutio ns not d es ig ned to provide this leve l of therm a l c apability
may a ffect the long-term reliability of the proc e s sor a nd sys tem.
The maximum junc tion tem pera ture is defined b y an a c tivation of the processo r
Intel® The r m al Monitor . Refer to Section 5.2 for more d etails. Analysis in dicates th a t
real applications are unlikely to cause the proces s or to consume the theoretical
maxim um power d is sipation f or su s tained time p eriods. Intel r ec ommends that
comple te thermal solu tion des igns target the TDP ind ic a te d in Table 5-1. The Intel®
Ther m a l Monitor featur e is designed to hel p pr otect t he proces sor in th e unlike ly even t
that an applica tion ex ceeds the TDP r ecommen da tion for a sustained period of time.
For more details on the usa g e of this featur e, refer to Section 5.2. In all cases, the
Intel® T hermal Mon itor f ea ture must be en a bled for the proc es sor to re m a in with in
specification.
Table 5-1. Thermal D esign P ower Specifications
Symbol Processor
Number Core Frequency Thermal Desig n
Power Unit Notes
TDP Z670 1.5 GHz and HFM VCC
0.6 GHZ and LFM VCC 3.0 W 1,2
Symbol Parameter Min Typ Max Unit Notes
Tj Junction Tem p er ature 0 - 90 °C
HD Streaming S cenar i o Powe r - 1.02 - W 3,4
NOTES:
1. The TDP specifica tio n sho uld be used to desig n the proce ssor the rmal solution. The TDP
is not the maximum theo retic a l power the processor can generate.
2. The Intel Therma l Monito r auto ma tic mod e must be enab led for the proc e ssor to
operate within specifications.
Thermal Speci ficat ions and Desig n C onsider a tions
32 Datasheet
3. Scenario Power examines a common use case and may be more indicative of a more
common power usage level as compared with the TDP. Measurement configuration
assumes : LCD brig htne s s 100nits, LCD 1024x80 0 10 .1” , USB touc h panel, I2C sensors,
SDIO WiFi on, 2GB DDR2, 73% PMIC effic ie nc y , 93% discrete VR effic ie nc y , Flas h*
v10.2.
4. 720p, YouTube*.
5.1 Temperature Monitoring
The processor incorporates two methods of m onitoring die temperature:
• By Intel Therma l M onitor
• By Digital Thermal Sensor (DTS)
The Intel The r m a l Monitor ( de ta iled in Section 5.2) must be u s ed to determine when
the maxim um specified processor ju nction temp er a ture h a s been reached.
5.2 Intel® Thermal Monitor
The Intel The r m a l Monitor helps control the processor temperature by activ a ting the
TCC (T hermal Control C ircuit) when the proces s or silicon re a ches its m aximu m
operating tem perature. The temperature at w hich the In tel ® Therm al Monitor
activa te s the TC C is not user configura ble . Bus traffic is snooped in the normal
mann er and interrupt requ es ts a r e la tched (and s er viced during the time that the
clocks are on) while th e TCC is active.
With a p r ope r ly desi gned an d c hara c terized th er m al solution, it is anticipa ted that the
TCC would only be activated for very short periods of time when ru nning the most
power intens ive applications . Th e pr oces s or per f or manc e impa c t due to these br ief
periods of TCC activ a tion is ex pected to be m inor an d hence not detectable.
An under- designed ther m a l solution that is not able to prevent exce s sive ac tivation of
the TCC in the anticipated ambient en v ir on m ent may ca use a noticeable per formance
loss and may affect the long-term relia bility of the proces s or . In addition, a thermal
soluti on that is significan tly und er-designed may not be capable of c ooling the
process or e ven w hen th e TC C is ac tive continuously.
The Intel The r m a l Monitor c ontrols th e p r ocessor temperature by modula ting ( s ta rting
and s topping) th e processor core clocks or by initiating an Enh anced Intel
SpeedStep® Technology transition when the proces s or silic on reaches its m a ximum
operat ing temp e r a ture. The I ntel Th er m al Monitor uses tw o m od es to ac tivate the
TCC : automatic mode and on-dema nd mode. If both modes are activa ted, automatic
mode takes prec edence.
There ar e two autom a tic modes ca lled the Intel Therm a l Monitor 1 ( TM1) a nd the Intel
Therma l M onitor 2 (TM2). Th es e m odes a r e s elec ted by writing values to the MSRs of
the processor. After the automatic m ode is enab le d, th e TCC will a c tivate only wh en
the inte r nal die tem perature reaches the m a x imum allowed value for op er ation.
The Intel® Thermal M onitor au tom a tic mode m ust b e e nabled th r ough IA-32
Firmware for the p r oc e s s or to be operating within s pecif ic a tions. Intel re c om m ends
that th e TM1 mode and the TM2 mode be enabled on the proc es s or.
Thermal Speci ficat ions and Desig n C onsider a tions
Datasheet 33
When the TM1 mode is enab led a nd a hig h tempera ture s ituation e xists, the cl oc ks will
be modula ted by a lte r nately tu r ning the clocks off and on at a 50 percent duty cycle .
Cycle times a r e pr oces s or speed dependent and will decrea se linearly as processor
core frequ encies incr ea s e. O nce the temperature has returned to a n on-critic a l level,
modulation ceases and TCC goes inactive. A small amount of hysteresis has been
inclu d ed to p r event rapid active/inactive tr a nsitions of the T CC when the proc es s or
temperature is near the trip poin t. The duty cycle is fac tor y configured a nd cannot be
modifi e d. Also, automatic mode d oes not r e quire an y additi onal ha rdware , softw are
drivers, or in terrupt handling routines. Processor performance will be decreased by
the same amount as the duty cycle when the TCC is active.
When the TM2 mode is enabled an d a high temperature situa tion exists, the pr oces s or
will perf orm an Enh an c e d Intel SpeedStep T e c hnology transition to the LFM. When
the processor temperature d r ops below the critical le vel, th e processor will make an
Enhanced In te l SpeedStep T echnology tran sition to the last r eq uested o pe r a ting point.
The Intel The rma l Monitor aut oma t ic mode and Enhance d Intel SpeedStep
Technology must be enable d t hrough IA-32 Firmware for the processor to be
operati ng within spec ific a t ions. I nt el rec ommends that TM1 and TM2 be
enabled on the p r ocess ors.
TM1 and TM2 can co-exist with in the processor. If both TM1 and TM2 bits ar e enabled
in the auto-throttle MSR, TM2 will tak e pr ec edence ov er TM1. However, if Forc e TM1
over TM2 is enabled in MSRs using IA-32 Firmware and TM 2 is not suf ficient to cool
the proc essor be low the maxim um opera ting temp erature, then TM1 will a lso activate
to help cool down th e pr ocessor.
If a processor load-b a sed E nhanc ed Intel SpeedStep Tech nology transition (through
MSR write) is initiated when a TM2 period is active, th er e a r e tw o poss ible results:
• If the processor load-based En hanced Intel SpeedS tep Technology trans iti on
target frequ ency is h igh er than the TM2 tran s ition based target frequen c y, the
processor load-based tra nsition will be deferred until th e T M2 event has been
completed.
• If the processor load-based Enhan c ed Intel SpeedStep Technology transition
target frequ ency is lower than the TM2 transition ba s ed tar get frequency, the
processor will tran sition to the pr oc e s sor loa d -ba sed En h anced Intel®
SpeedStep® Technology target f r equency poin t.
The TCC may also be activated using on-demand mode. If bit 4 of the ACP I Intel®
Ther m a l Monitor c ontrol r egister is written to a 1, the TC C w ill b e a ctivated
immediately independent of th e pr oc es s or temperat ure. Wh en using on-demand mode
to activa te the TCC, the duty cycle of the clock m odulation is p r ogrammable usi ng bits
3:1 of the same ACPI Intel Th ermal Monitor con tr ol register. I n automatic m ode, the
duty cy c le is fixed at 50% on, 50% of f. However in on-demand m ode, th e duty cycle
can be program m ed from 12.5% on/ 87.5% off, to 87.5% on/12.5% off in 12.5%
increments.
On-demand m ode m a y be used at the sa m e time a utomatic mode is enabled;
however, if the syste m tr ies to en able the T CC us ing on-demand mode at the sam e
time automatic m ode is en abled and a high tem perature con dition exists, au tomatic
mode will take precedence.
Thermal Speci ficat ions and Desig n C onsider a tions
34 Datasheet
An external signal, PROCHOT# (processor hot) is asserted when the processor detects
that its te m perature is above the therm a l trip poin t. Bus snooping a nd inter r upt
latching are also active while the TCC is a ctive.
Besides the thermal se nsor a nd ther m al control circuit, the I ntel Th e r m a l Monitor a ls o
includes one ACPI r egister , one performance counter register, three MS Rs, and one
I/O p in (PROC HOT#). A ll are a vailable to monitor an d control th e s ta te of the Intel®
Ther m a l Monitor feature. The In tel® Therm a l Monitor can be c onfigured to ge nera te
an interrupt upon the assertion or de-assertion of PROCHOT#.
PROCHOT# will not be asserted w hen the proc es s or is in the Sleep, Deep Sleep , and
Deeper Sleep low power states (see Figu r e 3-2). If the pla tform th ermal soluti on is
not able to main ta in the pr oc essor ju nction tempera ture within the maximum
specif ic ation, the system must initia te an or derly shutdown to prevent damage. If th e
processor en ters one of the above low power s ta tes with P R O CH O T # alrea dy asserted,
then PROCHOT # w ill remai n asserted un til the processor exits the low p ower state and
the proc essor ju nction temperature drops below the thermal tr ip point.
If the In tel Therm a l Monitor a utomatic m ode is disabled, the proces sor will operate
out of s pe c ificati on. Reg a r d less of enabling the automatic or on-dema nd mode s , in the
event of a catastroph ic cooling failur e, the proc e s sor w ill automatica lly shut dow n
when the silicon has reached a potentially c atastroph ic temperature. At this point the
THE RMTRIP# signa l will go activ e . THERMTRIP # a c tivation is indepe ndent of p r ocess or
activity and does not generate any bus cycles.
Table 5-2. Suppo rt for PROCHOT#/THERMTRIP# in Activ e and Idle States
System
State Core
State
PROCHOT# (Bidirectional) THERMTRIP#
Input Output
Core North
Complex Core North
Complex Core North
Complex
S0
C0 Supported Optional Active Active Active Active
C1/C1E Supported Optional Active Active Active Active
C2/C2E Supported Optional Active Active Active Active
C4/C4E Ignored Optional Inactive Active Not
Guaranteed Active
C6 Ignored Optional Inactive Active Inactive Active
5.2.1 Digital Thermal Sensor
The processor also contains an on die Digital Thermal Sensor (DTS) that is read using
an MSR (no I/O interface). The processor has a unique digital thermal sensor that’s
temperatu r e is a c c es s ible using th e pr oc es s or MSRs. Th e D T S is th e pr eferred method
of reading th e pr oc es s or die temperature sin c e it ca n be located much closer to th e
hottest portions of the die a nd can th us more ac c urately tr ack the die temperature
and potential a ctivation of processor c ore clock modulation using the Th er m al Monitor .
The DTS is only valid w hile the pr oc e s sor is in the norm al operat ing state (the Normal
package lev el low power sta te).
Thermal Speci ficat ions and Desig n C onsider a tions
Datasheet 35
Unlik e tr adition a l thermal devic es, the D TS outputs a tem perature r elative to th e
maximu m s upported operatin g temperatur e of the processor (TJ_max). It is the
respon s ibility of sof tware to c onvert the relat ive tem pe r a ture to an absolu te
temperatu r e. The temperature retu rned by the DT S will always be a t or below TJ_max.
Catas troph ic tem pera tur e con diti ons are detec table usin g a n Out of Specification
status bit. This bit is als o part of the DTS MSR. When this bit is set, the p r ocessor is
operat ing out of s p ecification and im m ed ia te shutd own of the system sh ould occu r .
The proces s or oper ation a nd code execu tion is not ens ured onc e the activ ation of the
Out of Specific ation status bit is s e t.
The DTS-relative tempera ture readout corresponds to the Intel® Thermal M onitor
(TM1/T M2) trigger poin t. W hen the DT S in dica tes m a ximum proces s or c or e
temperatu r e has been reached, the TM1 or TM2 hardware thermal control mechanism
will activate. Th e sy s tem des igner is required to use the DTS to ens ure proper
operat ion of th e processor with in its temper ature operating specificat ions.
Changes to the temperatu re can be detected usin g tw o pr ogra m m a ble thresh olds
located in the processor MSRs. These thres holds have the ca pa bility of gener a ting
interrupts using th e c ore's local APIC. R e fer to the Intel® 64 and IA-32 Architectures
Software Developer's Man uals f or s pec ific register an d progr a m ming detai ls .
5.2.2 Out of Specification Detection
Overhea t detec tion is performed by monitoring th e processor temperatur e a nd
temperatu r e gr a dient. This feature is in tended for grac eful shut down before the
THERMTRIP # is a c tiv a ted. If the processor ’ s T M1 or TM2 are trigger ed a nd the
temperatu r e r em a in s high, an “Out Of Spec ification” status and sticky bit are latched
in the statu s MSR register a nd generates thermal int er r upt.
5.2.3 Catastrophic Thermal Protection
The processor s upports the THERMTR IP# signal for catas tr op hic ther m al protection .
An externa l thermal sensor s hould also be used to protect the proce s sor and the
system again s t e xcessive tempera tures. Even with the ac tivation of THERMT RI P#,
whic h halts all processor internal clocks and activity, leakage current can be high
enoug h such that the pr oces s or can not be protected in all con ditions withou t the
remova l of power to the pr ocessor. If the exter nal therma l sensor de tects a potentially
catastrophic processor temperature, or if the THERMTRIP# signa l is a sserted by the
processor, the VCC supply to th e pr ocessor m ust be turn ed off w ithin 500 ms to
prevent perm a nent silicon damage due to th er m a l runaway of the proces s or .
THE RMTRIP# function a lity is not ensured if the PWRGOOD s ignal is not asser te d.
5.2.4 PROCHOT# Signal Pin
An external signal, PROCHOT# (processor hot), is asserted when the processor die
temperatu r e has reac hed its maximu m oper a tin g temperatur e. If TM1 or TM 2 is
enabled, th en the TCC w ill be ac tiv e when PROCHOT# is asserted. The processor can
be configured to g enerate an interr upt upon the as s ertion or deassertion of
Thermal Speci ficat ions and Desig n C onsider a tions
36 Datasheet
PROCHOT#. Refer to the Intel® 64 and IA-32 A r c hitectur es S oftware D ev eloper's
Manuals.
The proces s or im plements a bi-directional PROCHOT# capability to allow sys tem
designs to p rotect variou s compon ents fr om overheatin g s ituations. Th e PROCHOT#
signal is bi-direc tional in that it can either sign al when the pr oc e s s or has r eached its
maximu m opera tin g temper a tu r e or be dr iven from a n externa l sourc e to activate the
TCC . T he ability to a ctivate the TCC using PROCHOT# can p r ovide a mea ns for
thermal protec tion of s ystem c om ponents .
Only a single PROCHOT# pin exists at a pack a g e level of th e pr ocessor. When the
core's thermal sensor trips, the PROCHOT# s ig nal is driv en by the proc es s or pa c kage.
If only TM1 is enabled, PROCHO T# will be as s erted and only the core that is above
TCC te m pe r a ture trip point will have its core clocks modulated. I f TM2 is enabled and
the core is abov e T CC temperatu r e tr ip point, it will e nter the lowest programmed TM 2
performance s tate. It is important to n ote that Intel recom m e nds that both T M1 and
TM2 be ena bled.
When PRO CHOT# is driv en by a n external agen t, if only TM 1 is enabled on the core,
then the proces sor core will ha ve the clocks m odulated. If TM2 is enabled, then the
processor core will enter the lowest progra m med TM2 performance s ta te. It should be
noted that Forc e T M1 on TM2, enabled usin g IA-32 Firmware, does not have any
effect on external PROCHOT#. If PROCHOT# is driven by an externa l a gent when
TM1, T M 2, and Force TM 1 on T M 2 a r e a ll en a bled, then the proces s or will still apply
only TM2.
PROCHOT# m ay be used for th e r m a l p r otect ion of voltage reg ulators ( VR). System
designers can create a circuit to monitor the V R temperatur e a nd activate th e T CC
when th e tem per a tu r e limit of the VR is r ea c hed. By asserting PRO CHOT# (pulled-low)
and a c tivating the TCC, the VR will cool down as a r esult of r ed uced processor pow er
consumption.
Bi-directional PRO CHOT # can allow VR ther m a l d esigns to ta r ge t m a ximum s ustained
curr e nt instea d of maxim um curre nt. Sys tem s should still pr ovide proper co oling f or
the VR and rely on bi-directional PROCHOT# only as a backup in case of system
coolin g failur e. The system the r m al design should allow the power de livery c ir c uitry to
operat e within its te m perature specific a tion even while the processor is ope r ating at
its TDP.
With a p r ope r ly desi gned an d c hara c terized th er m al solution, it is anticipa ted that
bi-direc tional PROCHOT# wou ld only be asserted for very sh ort per io ds of time when
running the most power-intens iv e a pplication s . An under-des igned therm a l solution
that is not able t o preven t excess ive assertion of PROCHOT# in the anticipa ted
ambient environment m a y c a use a noticeable per forma nce loss.
§
Package M echa nical S pecif icati ons a nd P in Infor ma tion
Datasheet 37
6 Package Mechanical
Specifications and Pin
Information
This chapter describes the package specifications and pinout assignments.
6.1 Package Mechanical Specifications
The pr ocessor will be ava ilable in a 518 pin FCMB3 package. The package dimensions
are shown in Figure 6-1.
Package Me c hanic a l Specific a t ions and Pin I nformati on
38 Datasheet
Figure 6-1. Package Mechanical Drawing
Package M echa nical S pecif icati ons a nd Pin Informa t ion
40 Datasheet
Table 6-1. Processor P inout ( T op View—C olumns 21–31)
31 30 29 28 27 26 25 24 23 22 21
AL VSS VSS CDVO_TX3 CDVO_TX2
CDVO_TXST
B_ODD#
CDVO_CVRE
F
CDMI_RXCH
AR#
CDMI_RXSTB
_EVEN# CDMI_RX6 AL
AK
CDVO_TXDP
WR# CDVO_TX4 CDVO_TX0
CDVO_TXST
B_EVEN#
CDVO_RCO
MP0
CDVO_VBLA
NK#
CDMI_RXSTB
_ODD# AK
AJ LA_DATAP0 LA_DATAN0 VSS LA_DATAP1 VSS VSS VSS VSS VSS AJ
AH LA_CLKP VSS CDVO_STAL
L# CDVO_TX5 CDVO_TX1 CDVO_RCO
MP1 VCCQ_2 AH
AG LA_CLKN LA_DATAN1 VSS VSS AG
AF LA_DATAN2 LA_DATAP2 VSS LA_DATAN3 VCCD180 VCCA180 VCCP AF
AE LA_IBG VSS VSS VSS VSS AE
AD RSVD LA_VBG VSS LA_DATAP3 VCCD180 VCCA180 VCCP AD
AC RSVD VCCP VSS VSS VSS AC
AB TP3 VSS AB
AA TP5 TP4 VSS VCCPAOAC VNN RSVD9 VCC AA
Y TP6 RSVD8 VNN VSS VSS Y
W TP2 TP1 VSS THRMDA VNN VCC VCC W
V TP7 VSS VNN VSS VSS V
U TP8 THRMDC VNN VCC VCC U
T TP9 TP10 VNNSENSE VSS VNN VSS VSS T
R VNN VNN VNN VNN VNN R
P VSS VNN VSS VNN VNN VSS VSS P
N VNN VNN VNN VNN VNN N
M VNN VCC180 VNN VCC180 VNN VSS VSS M
L VCC180 VCC180 VNN L
K VCC180 VCC180 VSS VSS K
J SM_DQ1 SM_DQ0 VSS SM_BS2 J
H SM_DQ3 VSS VCC180 VCC180 VCCPDDR H
G SM_DQS1 SM_DQ2 VSS SM_BS1 VSS VSS VSS G
F SM_DM0 SM_MA2 VCC180 VCC180 VCCPDDR F
E SM_DQ5 VSS VSS VSS E
D SSM_DQ4 SM_MA4 SM_MA12 SM_BS0 SM_MA3 SM_MA7 SM_MA8 SM_MA0 D
C SM_DQ6 VSS VSS VSS VSS VSS VSS VSS C
B SM_DQ7 SM_DQ8 SM_DQ10 SM_DQS0 SM_DQ12 SM_DQ14 SM_RCVENO
UT SM_RCVENI
N B
A VSS SM_DQ9 SM_DQ11 SM_DM1 SM_MA10 SM_DQ13 SM_DQ15 SM_MA1 A
31 30 29 28 27 26 25 24 23 22 21
Package M echa nical S pecif icati ons a nd P in Infor ma tion
Datasheet 41
Table 6-2. Processor P inout ( T op View—C olumns 11–20)
20 19 18 17 16 15 14 13 12 11
AL CDMI_RX4 CDMI_RX1 CDMI_CVREF
CDMI_TXDPW
R# CDMI_TX6 CDMI_TX3 CDMI_TX1 AL
AK CDMI_RX7 CDMI_RX3 CDMI_RX0 CDMI_GVREF CDMI_TX7 CDMI_TX4 CDMI_TX2 AK
AJ VSS VSS VSS VSS VSS VSS VSS AJ
AH CDMI_RXDPW
R# CDMI_RX5 CDMI_RX2 CDMI_TXCHA
R# CDMI_TX5 CDMI_TX0 VCCQ_1 AH
AG VSS VSS VSS AG
AF CDVO_GVREF
VNN VCCP VCCP VNN AF
AE VSS VSS VSS VSS VSS AE
AD VCCP VNN VCCP VCCP VNN AD
AC VSS VSS VSS VSS VSS AC
AB AB
AA VCC VCC VCC VCC VCC AA
Y VSS VSS VSS VSS VSS Y
W VCC VCC VCC VCC VCC W
V VSS VSS VSS VSS VSS V
U VCC VCC VCC VCC VCC U
T VSS VSS VSS VSS VSS T
R VNN VNN VNN VNN VNN R
P VSS VSS VSS VSS VSS P
N VNN VNN VNN VNN VNN N
M VSS VSS VSS VSS VSS M
L L
K VSS VSS VSS VSS VSS VSS K
J J
H VCC180 VCC180 VCCPDDR VCC180 VCC180 H
G VSS VSS VSS VSS VSS G
F VCC180 VCC180 VCCPDDR VCC180 VCC180 F
E VSS VSS VSS VSS E
D SM_CK0 SM_CK0# VCC180SR RSVD SM_MA14 SM_RAS# SM_WE# D
C VSS VSS VSS VSS VSS VSS VSS C
B SM_RCOMP SM_MA6 SM_SREN# SM_MA11 SM_DQ25 SM_DQ27 SM_DQS3 B
A SM_MA9 SM_CKE0 SM_CKE1 SM_MA5 SM_MA13 SM_DQ24 SM_DQ26 A
20 19 18 17 16 15 14 13 12 11
Package M echa nical S pecif icati ons a nd P in Infor ma tion
42 Datasheet
Table 6-3. Processor Pinout ( T op View—C olumns 1–10)
10 9 8 7 6 5 4 3 2 1
AL
CDMI_TXSTB
_ODD#
CDMI_RCOM
P1 PRDY# BPM2# BPM1# VID6 VSS AL
AK
CDMI_TXSTB
_EVEN#
CDMI_RCOM
P0 GTLREF0 PREQ# BPM3# RSVD VID4 AK
AJ VSS VSS VSS VSS VSS VSS VID1 AJ
AH IERR BPM0# RSVD VID5 VID2 VID3 VID0 AH
AG VSS VSS VSS RSVD VSS RSVD RSVD AG
AF VCCP VCCP VNN VSS PROCHOT# AF
AE VSS VSS VSS THERMTRIP# PWRMODE1 AE
AD VCCP VCCP VNN VIDEN0 VSS PWRMODE2 VIDEN1 AD
AC VSS VCCP VSS PWRMODE0 AC
AB VCCPAOAC VCC VSS VCC AB
AA VCC VCC VCC VCC VCC AA
Y VSS VSS VSS VSS VSS Y
W VCC VCC VCC VCC VCC VCC VCC W
V VSS VSS VSSSENSE VSS VSS V
U VCC VCC VCC VCC VCC VCC VCC U
T VSS VSS VCCA VCCSENSE VCCA T
R VNN VNN VNN VSS VSS R
P VSS VSS VCCA RSVD VSS RSVD VCCPAOAC P
N VNN VNN VSS VSS BCLK_N N
M VSS VSS VCCP RSVD VSS BCLK_P RSVD M
L RSVD RSVD L
K VSS VCCP VCCPAOAC VSS RSVD K
J VSS VSS TMS TRST# J
H VCCPDDR VCC180 VCCP TDO TCK H
G VSS VSS VSS BSEL1 VSS RSVD VSS G
F VCCPDDR VCC180 VCCP VSS TDI F
E VSS VSS SM_CAS# RSVD E
D SM_ODT0 SM_ODT1 SM_CS1# SM_CS0# GTLREF1 VSS SM_DQ23 SM_DQ22 D
C VSS VSS VSS VSS VSS SM_DQ20 C
B SM_DQ29 SM_DQ31 SM_DQ17 SM_DQ19 SM_DM2 SM_DQS2 SM_DQ21 VSS B
A SM_DM3 SM_DQ28 SM_DQ30 SM_DQ16 SM_DQ18 VSS A
10 9 8 7 6 5 4 3 2 1
Package M echa nical S pecif icati ons a nd P in Infor ma tion
Datasheet 43
Table 6-4. Pinout—O rde r e d by Signal Name
Pin Name Pin #
BCLK_P M2
BCLK_N N1
BPM0# AH9
BPM1# AL4
BPM2# AL5
BPM3# AK4
BSEL1 G4
CDMI_CVREF AL17
CDMI_RXDPWR# AH20
CDMI_TXDPWR# AL15
CDMI_GVREF AK16
CDMI_RCOMP0 AK9
CDMI_RCOMP1 AL8
CDMI_RX0 AK17
CDMI_RX1 AL18
CDMI_RX2 AH17
CDMI_RX3 AK19
CDMI_RX4 AL19
CDMI_RX5 AH19
CDMI_RX6 AL21
CDMI_RX7 AK20
CDMI_RXCHAR# AL24
CDMI_RXSTB_ODD# AK22
CDMI_RXSTB_EVEN# AL22
CDMI_TX0 AH13
CDMI_TX1 AL11
CDMI_TX2 AK12
CDMI_TX3 AL12
CDMI_TX4 AK13
CDMI_TX5 AH14
CDMI_TX6 AL14
CDMI_TX7 AK14
CDMI_TXCHAR# AH16
CDMI_TXSTB_ODD# AL9
Pin Name Pin #
CDMI_TXSTB_EVEN# AK10
CDVO_CVREF AL25
CDVO_TXDPWR# AK30
CDVO_GVREF AF20
CDVO_RCOMP0 AK24
CDVO_RCOMP1 AH23
CDVO_STALL# AH27
CDVO_TX0 AK27
CDVO_TX1 AH24
CDVO_TX2 AL28
CDVO_TX3 AL29
CDVO_TX4 AK28
CDVO_TX5 AH26
CDVO_TXSTB_ODD# AL27
CDVO_TXSTB_EVEN# AK26
CDVO_VBLANK# AK23
GTLREF0 AK7
GTLREF1 D4
IERR AH10
LA_CLKN AG30
LA_CLKP AH31
LA_DATAN0 AJ30
LA_DATAN1 AG28
LA_DATAN2 AF31
LA_DATAN3 AF28
LA_DATAP0 AJ31
LA_DATAP1 AJ28
LA_DATAP2 AF30
LA_DATAP3 AD28
LA_IBG AE31
LA_VBG AD30
TP1 W30
TP2 W31
TP4 AA30
Pin Name Pin #
TP6 Y30
TP8 U30
TP10 T30
TP3 AB31
TP5 AA31
TP7 V31
TP9 T31
RSVD8 Y28
PRDY# AL7
PREQ# AK6
PROCHOT# AF1
PWRMODE0 AC1
PWRMODE1 AE2
PWRMODE2 AD2
SM_ODT1 D8
SM_ODT0 D9
RSVD7 E2
SM_BS0 D26
SM_BS1 G28
SM_BS2 J28
SM_CAS# E4
SM_CK0 D19
SM_CK0# D18
SM_CKE0 A19
SM_CKE1 A17
SM_CS0# D5
SM_CS1# D7
SM_DM0 F30
SM_DM1 A27
SM_DM2 B4
SM_DM3 A10
SM_DQ0 J30
SM_DQ1 J31
SM_DQ10 B28
Package M echa nical S pecif icati ons a nd P in Infor ma tion
44 Datasheet
Pin Name Pin #
SM_DQ11 A29
SM_DQ12 B25
SM_DQ13 A24
SM_DQ14 B24
SM_DQ15 A23
SM_DQ16 A6
SM_DQ17 B7
SM_DQ18 A4
SM_DQ19 B5
SM_DQ2 G30
SM_DQ20 C1
SM_DQ21 B2
SM_DQ22 D1
SM_DQ23 D2
SM_DQ24 A13
SM_DQ25 B14
SM_DQ26 A12
SM_DQ27 B12
SM_DQ28 A9
SM_DQ29 B9
SM_DQ3 H31
SM_DQ30 A7
SM_DQ31 B8
SM_DQ4 D31
SM_DQ5 E31
SM_DQ6 C31
SM_DQ7 B31
SM_DQ8 B29
SM_DQ9 A30
SM_DQS0 B26
SM_DQS1 G31
SM_DQS2 B3
SM_DQS3 B11
SM_MA0 D21
SM_MA1 A21
Pin Name Pin #
SM_MA2 F28
SM_MA3 D25
SM_MA4 D29
SM_MA5 A16
SM_MA6 B18
SM_MA7 D24
SM_MA8 D22
SM_MA9 A20
SM_MA10 A26
SM_MA11 B15
SM_MA12 D28
SM_MA13 A14
SM_MA14 D14
SM_RAS# D12
SM_RCOMP B19
SM_RCVENIN B21
SM_RCVENOUT B22
SM_SREN# B16
SM_WE# D11
TCK H2
TDI F1
TDO H4
RSVD D15
RSVD G2
RSVD L2
RSVD L4
RSVD K1
RSVD M4
RSVD M1
RSVD P2
RSVD P4
RSVD U28
RSVD W28
RSVD AK3
RSVD AG1
Pin Name Pin #
RSVD AG2
RSVD AG4
RSVD AH7
THERMTRIP# AE4
TMS J2
TRST# J1
VCC AA10
VCC AA12
VCC AA14
VCC AA16
VCC AA18
VCC AA2
VCC AA20
VCC AA22
VCC AA4
VCC AA7
VCC AA8
VCC AB1
VCC AB3
VCC U1
VCC U10
VCC U12
VCC U14
VCC U16
VCC U18
VCC U2
VCC U20
VCC U22
VCC U24
VCC U3
VCC U4
VCC U7
VCC U8
VCC W1
VCC W10
Package M echa nical S pecif icati ons a nd P in Infor ma tion
Datasheet 45
Pin Name Pin #
VCC W12
VCC W14
VCC W16
VCC W18
VCC W2
VCC W20
VCC W22
VCC W24
VCC W3
VCC W4
VCC W7
VCC W8
VCC180 F12
VCC180 F14
VCC180 F18
VCC180 F20
VCC180 F24
VCC180 F26
VCC180 F8
VCC180 H12
VCC180 H14
VCC180 H18
VCC180 H20
VCC180 H24
VCC180 H26
VCC180 H8
VCC180 K28
VCC180 K30
VCC180 L29
VCC180 L31
VCC180 M28
VCC180 M30
VCC180SR D16
VCCA P6
VCCA T1
Pin Name Pin #
VCCA T6
VCCA180 AD24
VCCA180 AF24
VCCD180 AD26
VCCD180 AF26
VCCP K7
VCCP AC28
VCCP AC5
VCCP AD10
VCCP AD14
VCCP AD16
VCCP AD20
VCCP AD22
VCCP AD8
VCCP AF10
VCCP AF14
VCCP AF16
VCCP AF22
VCCP AF8
VCCP F6
VCCP H6
VCCP M6
VCCQ_1 AH12
VCCQ_2 AH22
VCCPAOAC AB4
VCCPAOAC AA28
VCCPAOAC K5
VCCPAOAC P1
VCCPDDR F10
VCCPDDR F16
VCCPDDR F22
VCCPDDR H10
VCCPDDR H16
VCCPDDR H22
VCCSENSE T3
Pin Name Pin #
VID0 AH2
VID1 AJ1
VID2 AH4
VID3 AH3
VID4 AK2
VID5 AH6
VID6 AL2
VIDEN0 AD4
VIDEN1 AD1
RSVD9 AA24
VNN AA26
VNN AD12
VNN AD18
VNN AD6
VNN AF12
VNN AF18
VNN AF6
VNN L26
VNN M25
VNN M29
VNN M31
VNN N10
VNN N12
VNN N14
VNN N16
VNN N18
VNN N20
VNN N22
VNN N24
VNN N26
VNN N28
VNN N30
VNN N8
VNN P25
VNN P28
Package M echa nical S pecif icati ons a nd P in Infor ma tion
46 Datasheet
Pin Name Pin #
VNN P30
VNN R10
VNN R12
VNN R14
VNN R16
VNN R18
VNN R20
VNN R22
VNN R24
VNN R26
VNN R29
VNN R31
VNN R7
VNN R8
VNN T25
VNN U26
VNN V25
VNN W26
VNN Y25
VNNSENSE T29
VSS A2
VSS A31
VSS AA29
VSS AB2
VSS AB29
VSS AC11
VSS AC13
VSS AC15
VSS AC17
VSS AC19
VSS AC21
VSS AC22
VSS AC25
VSS AC3
VSS AC9
Pin Name Pin #
VSS AC30
VSS AD29
VSS AD3
VSS AD31
VSS AE11
VSS AE13
VSS AE15
VSS AE17
VSS AE19
VSS AE21
VSS AE23
VSS AE25
VSS AE29
VSS AE5
VSS AE7
VSS AE9
VSS AF29
VSS AF3
VSS AG10
VSS AG14
VSS AG16
VSS AG20
VSS AG22
VSS AG26
VSS AG3
VSS AG5
VSS AG8
VSS AH29
VSS AJ11
VSS AJ12
VSS AJ14
VSS AJ15
VSS AJ17
VSS AJ18
VSS AJ19
Pin Name Pin #
VSS AJ2
VSS AJ21
VSS AJ22
VSS AJ24
VSS AJ25
VSS AJ27
VSS AJ29
VSS AJ4
VSS AJ5
VSS AJ7
VSS AJ8
VSS AJ9
VSS AL1
VSS AL30
VSS AL31
VSS B1
VSS C10
VSS C12
VSS C13
VSS C14
VSS C16
VSS C17
VSS C19
VSS C20
VSS C21
VSS C23
VSS C24
VSS C26
VSS C27
VSS C29
VSS C3
VSS C30
VSS C6
VSS C7
VSS C9
Package M echa nical S pe c ifi c a tions and Pi n Information
Datasheet 47
Pin Name Pin #
VSS D3
VSS E12
VSS E14
VSS E18
VSS E20
VSS E24
VSS E26
VSS E29
VSS E6
VSS E8
VSS F3
VSS G11
VSS G13
VSS G15
VSS G17
VSS G19
VSS G21
VSS G23
VSS G25
VSS G29
VSS G3
VSS G5
VSS G7
VSS G9
VSS H29
VSS J29
VSS J3
VSS J4
VSS K12
VSS K13
VSS K14
VSS K18
VSS K19
VSS K20
VSS K24
Pin Name Pin #
VSS K25
VSS K3
VSS K9
VSS M11
VSS M13
VSS M15
VSS M17
VSS M19
VSS M21
VSS M23
VSS M3
VSS M8
VSS M9
VSS N3
VSS N7
VSS P11
VSS P13
VSS P15
VSS P17
VSS P19
VSS P21
VSS P23
VSS P29
VSS P3
VSS P31
VSS P8
VSS P9
VSS R2
VSS R4
VSS T11
VSS T13
VSS T15
VSS T17
VSS T19
VSS T21
Pin Name Pin #
VSS T23
VSS T28
VSS T8
VSS T9
VSS V11
VSS V13
VSS V15
VSS V17
VSS V19
VSS V2
VSS V21
VSS V23
VSS V29
VSS V4
VSS V8
VSS V9
VSS W29
VSS Y1
VSS Y11
VSS Y13
VSS Y15
VSS Y17
VSS Y19
VSS Y21
VSS Y23
VSS Y3
VSS Y6
VSS Y8
VSS Y9
VSS G1
VSSSENSE V6
§